Skip to main content
Log in

Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Amrhein, C., Mosher, P. A., & Strong, J. E. (1993). Colloid-assisted transport of trace metals in roadside soils receiving deicing salts. Soil Science Society of America Journal, 57(5), 1212–1217.

    Article  CAS  Google Scholar 

  • Backhus, D. A., Ryan, J. N., Groher, D. M., MacFarlane, J. K., & Gschwend, P. M. (1993). Sampling colloids and colloid-associated contaminants in ground water. Ground Water, 31(3), 466–479.

    Article  CAS  Google Scholar 

  • Biddle, D. L., Chittleborough, D. J., & Fitzpatrick, R. W. (1995). Field monitoring of solute and colloid mobility in a gneissic sub-catchment, South Australia. Applied Clay Science, 9(6), 433–442.

    Article  CAS  Google Scholar 

  • Brady, N. C., & Weil, R. R. (2008). The nature and properties of soils. Upper Saddle River, NJ: Pearson Prentice Hall.

    Google Scholar 

  • Buddemeier, R. W., & Hunt, J. R. (1988). Transport of colloidal contaminants in groundwater: Radionuclide migration at the Nevada test site. Applied Geochemistry, 3(5), 535–548.

    Article  CAS  Google Scholar 

  • Chen, G., Flury, M., Harsh, J. B., & Lichtner, P. C. (2005). Colloid-facilitated transport of cesium in variably saturated hanford sediments. Environmental Science and Technology, 39(10), 3435–3442.

    Article  CAS  Google Scholar 

  • Chen, X., & Mao, S. S. (2007). Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews, 107(7), 2891–2959.

    Article  CAS  Google Scholar 

  • Cheng, T., & Saiers, J. E. (2010). Colloid-facilitated transport of cesium in vadose-zone sediments: The importance of flow transients. Environmental Science and Technology, 44(19), 7443–7449.

    Article  CAS  Google Scholar 

  • Dai, Z., Fornasiero, D., & Ralston, J. (1999). Particle-bubble attachment in mineral flotation. Journal of Colloid and Interface Science, 217(1), 70–76.

    Article  CAS  Google Scholar 

  • Dai, M., Martin, J.-M., & Cauwet, G. (1995). The significant role of colloids in the transport and transformation of organic carbon and associated trace metals (Cd, Cu and Ni) in the Rhône delta (France). Marine Chemistry, 51(2), 159–175.

    Article  CAS  Google Scholar 

  • de Jonge, L. W., Kjaergaard, C., & Moldrup, P. (2004). Colloids and colloid-facilitated transport of contaminants in soils. Vadose Zone Journal, 3(2), 321.

    Article  Google Scholar 

  • DeNovio, N. M., Saiers, J. E., & Ryan, J. N. (2004). Colloid movement in unsaturated porous media. Vadose Zone Journal, 3(2), 338–351.

    CAS  Google Scholar 

  • El-Farhan, Y. H., DeNovio, N. M., Herman, J. S., & Hornberger, G. M. (2000). Mobilization and transport of soil particles during infiltration experiments in an agricultural field, shenandoah valley, Virginia. Environmental Science and Technology, 34(17), 3555–3559.

    Article  CAS  Google Scholar 

  • Gamerdinger, A. P., & Kaplan, D. I. (2001). Physical and chemical determinants of colloid transport and deposition in water-unsaturated sand and Yucca Mountain tuff material. Environmental Science and Technology, 35(12), 2497–2504.

    Article  CAS  Google Scholar 

  • Graham, M. C., Vinogradoff, S. I., Chipchase, A. J., Dunn, S. M., Bacon, J. R., & Farmer, J. G. (2006). Using size fractionation and Pb isotopes to study Pb transport in the waters of an organic-rich upland catchment. Environmental Science and Technology, 40(4), 1250–1256.

    Article  CAS  Google Scholar 

  • Grolimund, D., & Borkovec, M. (1999). Long-term release kinetics of colloidal particles from natural porous media. Environmental Science and Technology, 33(22), 4054–4060.

    Article  CAS  Google Scholar 

  • Grolimund, D., Elimelech, M., Borkovec, M., Barmettler, K., Kretzschmar, R., & Sticher, H. (1998). Transport of in situ mobilized colloidal particles in packed soil columns. Environmental Science and Technology, 32(22), 3562–3569.

    Article  CAS  Google Scholar 

  • Haliena, B., Zheng, H., Melson, N., Kaplan, D. I., & Barnett, M. O. (2016). Decreased salinity and actinide mobility: Colloid-facilitated transport or pH change? Environmental Science and Technology, 50(2), 625–632.

    Article  CAS  Google Scholar 

  • Hartland, A., Larsen, J. R., Andersen, M. S., Baalousha, M., & O’Carroll, D. (2015). Association of arsenic and phosphorus with iron nanoparticles between streams and aquifers: Implications for arsenic mobility. Environmental Science and Technology, 49(24), 14101–14109.

    Article  CAS  Google Scholar 

  • Hubbe, M. A. (1985). Detachment of colloidal hydrous oxide spheres from flat solids exposed to flow 2. Mechanism of release. Colloids and Surfaces, 16(3), 249–270.

    Article  CAS  Google Scholar 

  • Jassby, D., Farner Budarz, J., & Wiesner, M. (2012). Impact of aggregate size and structure on the photocatalytic properties of TiO2 and ZnO nanoparticles. Environmental Science and Technology, 46(13), 6934–6941.

    Article  CAS  Google Scholar 

  • Kaplan, D. I., Bertsch, P. M., Adriano, D. C., & Miller, W. P. (1993). Soil-borne mobile colloids as influenced by water flow and organic carbon. Environmental Science and Technology, 27(6), 1193–1200.

    Article  CAS  Google Scholar 

  • Karathanasis, A. D., & Johnson, D. M. C. (2006). Stability and transportability of biosolid colloids through undisturbed soil monoliths. Geoderma, 130(3–4), 334–345.

    Article  CAS  Google Scholar 

  • Keller, A. A., & Sirivithayapakorn, S. (2004). Transport of colloids in unsaturated porous media: Explaining large-scale behavior based on pore-scale mechanisms. Water Resources Research, 40(12), W12403.

    Article  CAS  Google Scholar 

  • Kim, I., & Kim, G. (2015). Role of colloids in the discharge of trace elements and rare earth elements from coastal groundwater to the ocean. Marine Chemistry, 176, 126–132.

    Article  CAS  Google Scholar 

  • Klitzke, S., Schroeder, J., Selinka, H.-C., Szewzyk, R., & Chorus, I. (2015). Attenuation and colloidal mobilization of bacteriophages in natural sediments under anoxic as compared to oxic conditions. Science of the Total Environment, 518–519, 130–138.

    Article  CAS  Google Scholar 

  • Knappenberger, T., Aramrak, S., & Flury, M. (2015). Transport of barrel and spherical shaped colloids in unsaturated porous media. Journal of Contaminant Hydrology, 180, 69–79.

    Article  CAS  Google Scholar 

  • Kretzschmar, R., & Schaefer, T. (2005). Metal retention and transport on colloidal particles in the environment. Elements, 1(4), 205–210.

    Article  CAS  Google Scholar 

  • Liu, W., Wang, T., Borthwick, A. G. L., Wang, Y., Yin, X., Li, X., et al. (2013). Adsorption of Pb2+, Cd2+, Cu2+ and Cr3+ onto titanate nanotubes: Competition and effect of inorganic ions. Science of the Total Environment, 456–457, 171–180.

    Article  CAS  Google Scholar 

  • McDowell-Boyer, L. M. (1992). Chemical mobilization of micron-sized particles in saturated porous media under steady flow conditions. Environmental Science and Technology, 26(3), 586–593.

    Article  CAS  Google Scholar 

  • Mesticou, Z., Kacem, M., & Dubujet, P. (2014). Influence of ionic strength and flow rate on silt particle deposition and release in saturated porous medium: Experiment and modeling. Transport in Porous Media, 103(1), 1–24.

    Article  CAS  Google Scholar 

  • Miller, J. O., Karathanasis, A. D., & Matocha, C. J. (2011). In situ generated colloid transport of Cu and Zn in reclaimed mine soil profiles associated with biosolids application. Applied and Environmental Soil Science, 2011, 9.

    Article  CAS  Google Scholar 

  • Mills, W. B., Liu, S., & Fong, F. K. (1991). Literature review and model (COMET) for colloid/metals transport in porous media. Ground Water, 29, 199–208.

    Article  CAS  Google Scholar 

  • Mishurov, M., Yakirevich, A., & Weisbrod, N. (2008). Colloid transport in a heterogeneous partially saturated sand column. Environmental Science and Technology, 42(4), 1066–1071.

    Article  CAS  Google Scholar 

  • Mohanty, S. K., Saiers, J. E., & Ryan, J. N. (2015). Colloid mobilization in a fractured soil during dry-wet cycles: Role of drying duration and flow path permeability. Environmental Science and Technology, 49(15), 9100–9106.

    Article  CAS  Google Scholar 

  • Mohanty, S. K., Saiers, J. E., & Ryan, J. N. (2016). Colloid mobilization in a fractured soil: Effect of pore-water exchange between preferential flow paths and soil matrix. Environmental Science and Technology, 50(5), 2310–2317.

    Article  CAS  Google Scholar 

  • Mui, J., Ngo, J., & Kim, B. (2016). Aggregation and colloidal stability of commercially available Al2O3 nanoparticles in aqueous environments. Nanomaterials, 6(5), 90.

    Article  CAS  Google Scholar 

  • Novikov, A. P., Kalmykov, S. N., Utsunomiya, S., Ewing, R. C., Horreard, F., Merkulov, A., et al. (2006). Colloid Transport of plutonium in the far-field of the Mayak Production Association, Russia. Science, 314(5799), 638.

    Article  CAS  Google Scholar 

  • Oursel, B., Garnier, C., Durrieu, G., Mounier, S., Omanović, D., & Lucas, Y. (2013). Dynamics and fates of trace metals chronically input in a Mediterranean coastal zone impacted by a large urban area. Marine Pollution Bulletin, 69(1–2), 137–149.

    Article  CAS  Google Scholar 

  • Pawlowska, A., Sznajder, I., & Sadowski, Z. (2017). The colloid hematite particle migration through the unsaturated porous bed at the presence of biosurfactants. Environmental Science and Pollution Research International, 24(21), 17912–17919.

    Article  CAS  Google Scholar 

  • Puls, R. W., Clark, D. A., Bledsoe, B., Powell, R. M., & Paul, C. J. (1992). Metals in ground water: Sampling artifacts and reproducibility. Hazardous Waste and Hazardous Materials, 9(2), 149–162.

    Article  CAS  Google Scholar 

  • Qi, Z., Hou, L., Zhu, D., Ji, R., & Chen, W. (2014). Enhanced transport of phenanthrene and 1-naphthol by colloidal graphene oxide nanoparticles in saturated soil. Environmental Science and Technology, 48(17), 10136–10144.

    Article  CAS  Google Scholar 

  • Redman, J. A., Grant, S. B., Olson, T. M., & Estes, M. K. (2001). Pathogen filtration, heterogeneity, and the potable reuse of wastewater. Environmental Science and Technology, 35(9), 1798–1805.

    Article  CAS  Google Scholar 

  • Roth, E. J., Gilbert, B., & Mays, D. C. (2015). Colloid deposit morphology and clogging in porous media: Fundamental insights through investigation of deposit fractal dimension. Environmental Science and Technology, 49(20), 12263–12270.

    Article  CAS  Google Scholar 

  • Ryan, J. N., Aiken, G. R., Backhus, D. A., Villholth, K. G., & Hawley, C. M. (1999). Investigating the potential for colloid-and organic matter-facilitated transport of polycyclic aromatic hydrocarbons in crude oil-contaminated ground water. US geological survey toxic substances hydrology program–Proceedings of the Technical Meeting (pp. 211–222), Charleston, South Carolina.

  • Ryan, J. N., & Elimelech, M. (1996). A collection of papers presented at the symposium on colloidal and interfacial phenomena in aquatic environments colloid mobilization and transport in groundwater. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 107, 1–56.

    Article  CAS  Google Scholar 

  • Ryan, J. N., & Gschwend, P. M. (1994). Effects of ionic strength and flow rate on colloid release: Relating kinetics to intersurface potential energy. Journal of Colloid and Interface Science, 164(1), 21–34.

    Article  CAS  Google Scholar 

  • Ryan, J. N., Illangasekare, T. H., Litaor, M. I., & Shannon, R. (1998). Particle and plutonium mobilization in macroporous soils during rainfall simulations. Environmental Science and Technology, 32(4), 476–482.

    Article  CAS  Google Scholar 

  • Saiers, J. E., & Lenhart, J. J. (2003). Ionic-strength effects on colloid transport and interfacial reactions in partially saturated porous media. Water Resources Research, 39(9), 1256.

    Article  CAS  Google Scholar 

  • Sang, W., Morales, V. L., Zhang, W., Stoof, C. R., Gao, B., Schatz, A. L., et al. (2013). Quantification of colloid retention and release by straining and energy minima in variably saturated porous media. Environmental Science and Technology, 47(15), 8256–8264.

    CAS  Google Scholar 

  • Seta, A. K., & Karathanasis, A. D. (1997). Atrazine adsorption by soil colloids and co-transport through subsurface environments. Soil Science Society of America Journal, 61(2), 612–617.

    Article  CAS  Google Scholar 

  • Sprague, L. A., Herman, J. S., Hornberger, G. M., & Mills, A. L. (2000). Atrazine adsorption and colloid-facilitated transport through the unsaturated zone. Journal of Environmental Quality, 29(5), 1632–1641.

    Article  CAS  Google Scholar 

  • Thompson, A., Chadwick, O. A., Boman, S., & Chorover, J. (2006). Colloid mobilization during soil iron redox oscillations. Environmental Science and Technology, 40(18), 5743–5749.

    Article  CAS  Google Scholar 

  • Torkzaban, S., Bradford, S. A., & Walker, S. L. (2007). Resolving the coupled effects of hydrodynamics and DLVO forces on colloid attachment in porous media. Langmuir, 23(19), 9652–9660.

    Article  CAS  Google Scholar 

  • Wang, T., LaMontagne, D., Lynch, J., Zhuang, J., & Cao, Y. C. (2013). Colloidal superparticles from nanoparticle assembly. Chemical Society Reviews, 42(7), 2804–2823.

    Article  CAS  Google Scholar 

  • Zhang, J., Li, Y., Zhang, X., & Yang, B. (2010). Colloidal self-assembly meets nanofabrication: from two-dimensional colloidal crystals to nanostructure arrays. Advanced Materials, 22(38), 4249–4269.

    Article  CAS  Google Scholar 

  • Zhang, H., & Selim, H. M. (2007). Colloid mobilization and arsenite transport in soil columns: Effect of ionic strength. Journal of Environmental Quality, 36(5), 1273–1280.

    Article  CAS  Google Scholar 

  • Zhou, D., Wang, D., Cang, L., Hao, X., & Chu, L. (2011). Transport and re-entrainment of soil colloids in saturated packed column: effects of pH and ionic strength. Journal of Soils and Sediments, 11(3), 491–503.

    Article  CAS  Google Scholar 

  • Zhu, Y., Ma, L. Q., Dong, X., Harris, W. G., Bonzongo, J. C., & Han, F. (2014). Ionic strength reduction and flow interruption enhanced colloid-facilitated Hg transport in contaminated soils. Journal of Hazardous Materials, 264, 286–292.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the “Climate Technology Development and Application” research project from International Environmental Research Institute (IERI) at Gwangju Institute of Science and Technology (GIST), Korea, in 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung-Woong Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Ko, IW., Yoon, IH. et al. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea. Environ Geochem Health 41, 469–480 (2019). https://doi.org/10.1007/s10653-018-0099-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0099-7

Keywords

Navigation