Skip to main content
Log in

Spatial variability and geochemistry of rare earth elements in soils from the largest uranium–phosphate deposit of Brazil

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The Itataia uranium–phosphate deposit is the largest uranium reserve in Brazil. Rare earth elements (REEs) are commonly associated with phosphate deposits; however, there are no studies on the concentrations of REEs in soils of the Itataia deposit region. Thus, the objective of the research was to evaluate the concentration and spatial variability of REEs in topsoils of Itataia phosphate deposit region. In addition, the influence of soil properties on the geochemistry of REEs was investigated. Results showed that relatively high mean concentrations (mg kg−1) of heavy REEs (Gd 6.01; Tb 1.25; Ho 1.15; Er 4.05; Tm 0.64; Yb 4.61; Lu 0.65) were found in surface soils samples. Soil properties showed weak influence on the geochemical behavior of REEs in soils, except for the clay content. On the other hand, parent material characteristics, such as P and U, had strong influence on REEs concentrations. Spatial distribution patterns of REEs in soils are clearly associated with P and U contents. Therefore, geochemical surveys aiming at the delineation of ore-bearing zones in the region can benefit from our data. The results of this work reinforce the perspective for co-mining of P, U and REEs in this important P–U reserve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abanda, P. A., & Hannigan, R. E. (2006). Effect of diagenesis on trace element partitioning in shales. Chemical Geology, 230, 42–59.

    Article  CAS  Google Scholar 

  • Agnan, Y., Delmas, N. S., & Probst, A. (2014). Origin and distribution of rare earth elements in various lichen and moss species over the last century in France. Science of the Total Environment, 487, 1–12.

    Article  CAS  Google Scholar 

  • Alfaro, M. R., Nascimento, C. W. A., Biondi, C. M., Silva, Y. J. A. B., Silva, Y. J. A. B., Accioly, A. M. A., et al. (2018). Rare-earth-element geochemistry in soils developed in different geological settings of Cuba. CATENA, 162, 317–324.

    Article  CAS  Google Scholar 

  • Almeida, F. F. M., Hasui, Y., Brito Neves, B. B., & Fuck, R. A. (1981). Brazilian structural provinces: An introduction. Earth Science Reviews, 17, 1–29.

    Article  Google Scholar 

  • Aubert, D., Stille, P., Probst, A., Lafaye, F. G., Pourcelot, L., & Del Nero, M. (2002). Characterization and migration of atmospheric REE in soils and surface waters. Geochimica et Cosmochimica Acta, 66(19), 3339–3350.

    Article  CAS  Google Scholar 

  • Brioschi, L., Steinmann, M., Lucot, E., Pierret, M. C., Stille, P., Prunier, J., et al. (2013). Transfer of rare earth elements (REE) from natural soil to plant systems: implications for the environmental availability of anthropogenic REE. Plant and Soil, 366, 143–163.

    Article  CAS  Google Scholar 

  • Calado, B. O., Porto, C. G., & Abram, M. B. (2016). Levantamento geoquímico orientativo para fosfato na região de Itataia, estado do Ceará, Brasil. Geochimica Brasiliensis, 30, 33–54.

    Google Scholar 

  • Cao, X., Wu, P., & Cao, Z. (2016). Element geochemical characteristics of a soil profile developed on dolostone in central Guizhou, southern China: implications for parent materials. Acta Geochimica, 35(4), 445–462.

    Article  CAS  Google Scholar 

  • Carvalho, L. A., Meurer, I., Silva Junior, C. A., Cavalieri, K. M. V., & Santos, C. F. B. (2011). Dependência espacial dos atributos físicos de três classes de solos cultivados com cana-de-açúcar sob colheita mecanizada. Revista Brasileira de Engenharia Agrícola e Ambiental, 15, 940–949.

    Article  Google Scholar 

  • Censi, P., Cibella, F., Falcone, E. E., Cuttitta, G., Saiano, F., Inguaggiato, C., et al. (2017). Rare earths and trace elements contents in leaves: A new indicator of the composition of atmospheric dust. Chemosphere, 169, 342–350.

    Article  CAS  Google Scholar 

  • Chen, L. M., Zhang, G. L., & Jin, Z. D. (2014). Rare earth elements of a 1000-year paddy soil chronosequence: Implications for sediment provenances. Parent material uniformity and pedological changes. Geoderma, 230, 274–279.

    Article  CAS  Google Scholar 

  • Compton, J. S., White, R. A., & Smith, M. (2003). Rare earth element behavior in soils and salt pan sediments of a semiarid granitic terrain in the Western Cape, South Africa. Chemical Geology, 201(3–4), 239–255.

    Article  CAS  Google Scholar 

  • Condie, K. C., Dengate, J., & Cullers, R. L. (1995). Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59, 279–294.

    Article  CAS  Google Scholar 

  • Du, X., & Graedel, T. E. (2011). Global in-use stocks of the rare earth elements: A first estimate. Environmental Science and Technology, 45, 4096–4101.

    Article  CAS  Google Scholar 

  • Haneklaus, N., Sun, Y., Bol, R., Lottermoser, B., & Schnug, E. (2017). To extract, or not to extract uranium from phosphate rock, that is the question. Environmental Science and Technolology, 51, 753–754.

    Article  CAS  Google Scholar 

  • Henderson, P. (1984). General geochemical properties and abundances of the rare earth elements. In P. Henderson (Ed.), Rare earth element geochemistry: Developments in geochemistry (Vol. 2). Amsterdam: Elsevier.

    Google Scholar 

  • Hu, Y., Vanhaecke, F., Moens, L., Dams, R., Del Castilho, P., & Japenga, J. (1998). Determination of the aqua regia soluble content of rare earth elements in fertilizer, animal fodder phosphate and manure samples using inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 373(1), 95–105.

    Article  CAS  Google Scholar 

  • IUSS-Working Group WRB. (2014). World reference base for soil resources 2014. World Soil Resources Report No. 106. Rome: FAO.

  • Júnior, J. T. G., & Souza, M. J. N. (2012). Caracterização ambiental de Santa Quitéria, Ceará: A nova cidade uranífera do Brasil. Revista Geonorte, Edição Especial, 2(4), 1368–1377.

    Google Scholar 

  • Kaiser, H. F. (1958). The Varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200.

    Article  Google Scholar 

  • Khater, A. E. M., Galmed, M. A., Nasr, M. M., & El-Taher, A. (2016). Uranium and rare earth elements in Hazm El-Jalamid phosphate, Saudi Arabia: Concentrations and geochemical patterns comparison. Environmental Earth Science, 75, 1261–1273.

    Article  CAS  Google Scholar 

  • Laveuf, C., & Cornu, S. (2009). A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma, 154, 1–12.

    Article  CAS  Google Scholar 

  • Li, X., Chen, Z., Chen, Z., & Zhang, Y. (2013). A human health risk assessment of rare earth elements in soil and vegetables from a mining area in Fujian Province, Southeast China. Chemosphere, 93, 1240–1246. https://doi.org/10.1016/j.chemosphere.2013.06.085.

    Article  CAS  Google Scholar 

  • Liang, T., Li, K., & Wang, L. (2014a). State of rare earth elements in different environmental components in mining areas of China. Environmental Monitoring and Assessment, 186, 1499–1513.

    Article  CAS  Google Scholar 

  • Liang, T., Li, K., & Wang, L. (2014b). Geochemical fractions of rare earth elements in soil around a mine tailing in Baotou, China. Scientific Reports, 5, 12483. https://doi.org/10.1038/srep12483.

    Article  Google Scholar 

  • Lopes Filho, A. F. (1977). Bases de estudos hidrogeológicos para a região de Itatira. Nota técnica. Fortaleza: Nuclebrás/DRM.

    Google Scholar 

  • Mendonça, J. C. J. S., Campos, M., Braga, A. P. G., Souza, E. M., Favali, J. C., & Leal, J. R. L. V. (1985). Jazida de urânio de Itataia-Ceara. In Principais depositos minerais do Brasil, I (pp. 121–131). Departamento Nacional de Producao Mineral-DNPM/Companhia Vale do Rio Doce-CVRD.

  • Mihajlovic, J., Stärk, H. J., & Rinklebe, J. (2014). Geochemical fractions of rare earth elements in two floodplain soil profiles at the Wupper River, Germany. Geoderma, 228–229, 160–172.

    Article  CAS  Google Scholar 

  • Mineralogical methods-SSSA. (2008). Part 5—Methods of soils analysis—soil science society of America. Book series 5. In A. L.Ulery & L. R. Drees (Eds.). Madison, Wiscosin

  • Morgan, B., Rate, A. W., Burton, E. D., & Smirk, M. (2012). Enrichment and fractionation of rare earth elements in FeS-and organic-rich estuarine sediments receiving acid sulfate soil drainage. Chemical Geology, 308, 60–73.

    Article  CAS  Google Scholar 

  • Nascimento, C. W. A., Oliveira, A. B., Ribeiro, M. R., & Melo, É. E. C. (2006). Distribution and availability of zinc and copper in benchmark soils of Brazil. Communications in Soil Science and Plant Analysis, 37(1–2), 109–125.

    Article  CAS  Google Scholar 

  • NIST-National Institute of Standards and Technology. (2002). Standard reference materials -SRM 2709, 2710 and 2711. Addendum Issue Date: January 18, 2002.

  • Noack, C. W., Jain, J. C., Stegmeier, J., Hakala, J. A., & Karamalidis, A. K. (2015). Rare earth element geochemistry of outcrop and core samples from the Marcellus shale. Geochemical Transactions, 16, 6. https://doi.org/10.1186/s12932-015-0022-4.

    Article  CAS  Google Scholar 

  • OECD Nuclear Energy Agency and International Atomic Energy Agency. (2016). Uranium resources, production and demand.

  • Pagano, G., Guida, M., Tommasi, F., & Oral, R. (2015). Health effects and toxicity mechanisms of rare Earth elements—knowledge gaps and research prospects. Ecotoxicology and Environmental Safety, 115, 40–48.

    Article  CAS  Google Scholar 

  • Paye, H. S., Mello, J. W. M., Mascarenhas, G. R. L. M., & Gasparon, M. (2016). Distribution and fractionation of the rare earth elements in Brazilian soils. Journal of Geochemical Exploration, 161, 27–41.

    Article  CAS  Google Scholar 

  • Pédrot, M., Dia, A., Davranche, M., & Gruau, G. (2015). Upper soil horizons control the rare earth element patterns in shallow groundwater. Geoderma, 239–240, 84–96.

    Article  CAS  Google Scholar 

  • Pepi, S., Sansone, L., Chicca, M., Marrocchino, E., & Vaccaro, C. (2016). Distribution of rare earth elements in soil and grape berries of Vitis vinifera cv. “Glera”. Environmental Monitoring and Assessment, 188, 477–486.

    Article  CAS  Google Scholar 

  • Ramos, S. J., Dinali, G., Carvalho, T. S., Chaves, L. C., Siqueira, J. O., & Guilherme, L. R. G. (2016). Rare earth elements in raw materials and products of the phosphate fertilizer industry in South America: Content, signature, and crystalline phases. Journal of Geochemical Exploration, 168, 177–186.

    Article  CAS  Google Scholar 

  • Rose, A. W. (1998). Geochemical exploration. In: Geochemistry. Encyclopedia of Earth Science. Dordrecht: Springer

  • Sadeghi, M., Morris, G. A., Carranza, E. J. M., Ladenberger, A., & Andersson, M. (2013). Rare earth element distribution and mineralization in Sweden: An application of principal component analysis to FOREGS soil geochemistry. Journal of Geochemical Exploration, 133, 160–175.

    Article  CAS  Google Scholar 

  • Silva, Y. J. A. B., Nascimento, C. W. A., Biondi, C. M., Van Straaten, P., Souza, V. S., Silva, Y. J. A. B., et al. (2017a). Influence of metaluminous granite mineralogy on the rare earth element geochemistry of rocks and soils along a climosequence in Brazil. Geoderma, 306, 28–39.

    Article  CAS  Google Scholar 

  • Silva, Y. J. A. B., Nascimento, C. W. A., Cantalice, J. R. B., Silva, Y. J. A. B., & Cruz, C. M. C. A. (2015). Watershed-scale assessment of background concentrations and guidance values for heavy metals in soils from a semiarid and coastal zone of Brazil. Environmental Monitoring and Assessment, 187, 558–568.

    Article  CAS  Google Scholar 

  • Silva, Y. J. A. B., Nascimento, C. W. A., Silva, Y. J. A. B., Biondi, C. M., & Silva, C. M. C. A. C. (2016). Rare earth element concentrations in Brazilian Benchmark Soils. Revista Brasileira de Ciência do Solo, 40, 1–13.

    Google Scholar 

  • Silva, Y. J. A. B., Nascimento, C. W. A., Van Straaten, P., Biondi, C. M., Souza, V. S., & Silva, Y. J. A. B. (2017b). Effect of I- and S-type granite parent material mineralogy and geochemistry on soil fertility: A multivariate statistical and Gis-based approach. CATENA, 149, 64–72.

    Article  CAS  Google Scholar 

  • Siqueira, D. S., Marques Júnior, J., & Pereira, G. T. (2010). The use of landforms to predict the variability of soil and orange attributes. Geoderma, 155, 55–66.

    Article  Google Scholar 

  • Šmuc, N. R., Dolenec, T., Serafimovski, T., Dolenec, M., & Vrhovnik, P. (2012). Geochemical characteristics of rare earth elements (REEs) in the paddy soil and rice (Oryza sativa L.) system of Kočani Field, Republic of Macedonia. Geoderma, 183–184, 1–11.

    Article  Google Scholar 

  • Taboada, T., Rodríguez-Lado, L., Ferro-Vázquez, C., Stoops, G., & Cortizas, A. M. (2016). Chemical weathering in the volcanic soils of Isla Santa Cruz (Galápagos Islands, Ecuador). Geoderma, 261, 160–168.

    Article  CAS  Google Scholar 

  • Taylor, S. R., & McLennan, S. M. (1985). The continental crust: its composition and evolution. An examination of the geochemical record preserved in sedimentary rocks. Oxford: Blackwell.

    Google Scholar 

  • Tyler, G. (2004). Rare earth elements in soil and plant systems—a review. Plant and Soil, 267(1–2), 191–206.

    Article  CAS  Google Scholar 

  • Tyler, G., & Olsson, T. (2002). Conditions related to solubility of rare and minor elements in forest soils. Journal of Plant Nutrition and Soil Science, 165, 594–601.

    Article  CAS  Google Scholar 

  • United States Geological Survey. (2016). Mineral commodity summaries (rare earth)

  • Veríssimo, C. U. V., Santos, R. V., Parente, C. V., Oliveira, C. G., Cavalcanti, J. A. D., & Neto, J. A. N. (2016). The Itataia phosphate-uranium deposit (Ceara, Brazil) new petrographic, geochemistry and isotope studies. Journal of South American Earth Sciences, 70, 115–144.

    Article  CAS  Google Scholar 

  • Vermeire, M. L., Cornu, S., Fekiacova, Z., Detienne, M., Delvaux, B., & Cornélis, J. T. (2016). Rare earth elements dynamics along pedogenesis in a chronosequence of podzolic soils. Chemical Geology, 446, 163–174.

    Article  CAS  Google Scholar 

  • Wang, L., & Liang, T. (2016). Anomalous abundance and redistribution patterns of rare earth elements in soils of a mining area in inner Mongolia, China. Environmental Science and Pollution Research, 23, 11330–11338.

    Article  CAS  Google Scholar 

  • Wei, F. S., Zheng, C. J., Chen, J. S., & Wu, Y. Y. (1991). Study on the background contents on 61 elements of soils in China. Chinese Journal of Environmental Science, 12, 12–20.

    CAS  Google Scholar 

  • Wiche, O., Zertani, V., Hentschel, W., Achtziger, R., & Midula, P. (2017). Germanium and rare earth elements in topsoil and soil-grown plants on different land use types in the mining area of Freiberg (Germany). Journal of Geochemical Exploration, 175, 120–129.

    Article  CAS  Google Scholar 

  • Yang, X. J., Lin, A., Li, X. L., Wu, Y., Zhou, W., & Chen, Z. (2013). China’sion-adsorption rare earth resources, mining consequences and preservation. Environmental Development, 8, 131–136.

    Article  Google Scholar 

  • Yoshida, S., Maramutsu, Y., Tagami, K., & Uchida, S. (1998). Concentrations of lanthanide elements, Th, and U in 77 Japanese surface soils. Environment International, 24, 275–286.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clístenes Williams Araújo do Nascimento.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cunha, C.S.M., da Silva, Y.J.A.B., Escobar, M.E.O. et al. Spatial variability and geochemistry of rare earth elements in soils from the largest uranium–phosphate deposit of Brazil. Environ Geochem Health 40, 1629–1643 (2018). https://doi.org/10.1007/s10653-018-0077-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0077-0

Keywords

Navigation