Environmental Geochemistry and Health

, Volume 40, Issue 3, pp 927–953 | Cite as

Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology

  • Zahra Derakhshan Nejad
  • Myung Chae Jung
  • Ki-Hyun Kim
Review Paper


The major frequent contaminants in soil are heavy metals which may be responsible for detrimental health effects. The remediation of heavy metals in contaminated soils is considered as one of the most complicated tasks. Among different technologies, in situ immobilization of metals has received a great deal of attention and turned out to be a promising solution for soil remediation. In this review, remediation methods for removal of heavy metals in soil are explored with an emphasis on the in situ immobilization technique of metal(loid)s. Besides, the immobilization technique in contaminated soils is evaluated through the manipulation of the bioavailability of heavy metals using a range of soil amendment conditions. This technique is expected to efficiently alleviate the risk of groundwater contamination, plant uptake, and exposure to other living organisms. The efficacy of several amendments (e.g., red mud, biochar, phosphate rock) has been examined to emphasize the need for the simultaneous measurement of leaching and the phytoavailability of heavy metals. In addition, some amendments that are used in this technique are inexpensive and readily available in large quantities because they have been derived from bio-products or industrial by-products (e.g., biochar, red mud, and steel slag). Among different amendments, iron-rich compounds and biochars show high efficiency to remediate multi-metal contaminated soils. Thereupon, immobilization technique can be considered a preferable option as it is inexpensive and easily applicable to large quantities of contaminants derived from various sources.

Graphical Abstract


Soil remediation technologies Heavy metals Immobilization Soil amendments 



KHK acknowledges support made in part by grants from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2016R1E1A1A01940995).


  1. Abdelhafez, A. A., Li, J., & Abbas, M. H. (2014). Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil. Chemosphere, 117, 66–71.CrossRefGoogle Scholar
  2. Abumaizar, R. J., & Smith, E. H. (1999). Heavy metal contaminants removal by soil washings. Journal of Hazardous Materials, 70(1–2), 71–86.CrossRefGoogle Scholar
  3. Acharya, P. (1994). Incineration at Bayou Bonfouca remediation project. Journal of the Air and Waste Management Association, 44, 1195–1203.CrossRefGoogle Scholar
  4. Adriano, D. C., Wenzel, W. W., Vangronsveld, J., & Bolan, N. S. (2004). Role of assisted natural remediation in environmental cleanup. Geoderma, 122(2–4), 121–142.CrossRefGoogle Scholar
  5. Agrawal, A., & Sahu, K. K. (2006). Kinetic and isotherm studies of cadmium adsorption on manganese nodule residue. Journal of Hazardous Materials, 137(2), 915–924.CrossRefGoogle Scholar
  6. Ahmad, M., Lee, S. S., Yang, J. E., Ro, H. M., Lee, Y. H., & Ok, Y. S. (2012). Effects of soil dilution and amendments (mussel shell, cow bone, and biochar) on Pb availability and phytotoxicity in military shooting range soil. Ecotoxicology and Environmental Safety, 79, 225–231. doi: 10.1016/j.ecoenv.2012.01.003.CrossRefGoogle Scholar
  7. Alghanmi, S. I., Al Sulami, A. F., EI-Zayat, T. A., Alhogbi, B. G., & Abdel Salam, M. (2015). Acid leaching of heavy metals from contaminated soil collected from Jeddah, Saudi Arabia: Kinetic and thermodynamics. International Soil and Water Conservation Research, 3(3), 196–208.CrossRefGoogle Scholar
  8. Alloway, B. J. (2013). Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability, Environmental pollution (Vol. 22, pp. 50–102). Whiteknights, UK: Springer.Google Scholar
  9. Alpaslan, B., & Yukselen, M. A. (2008). Remediation of lead contaminated soils by stabilization/solidification. Water, Air, and Soil pollution, 133(1), 253–263. doi: 10.1023/A:1012977829536.CrossRefGoogle Scholar
  10. Alshawabkeh, A. N., & Bricka, R. M. (2013). Basics and application of electrokinetics remediation, Remediation engineering of contaminated soils (pp. 95–111). New York, NY: Marcel Dekker.Google Scholar
  11. Alshawabkeh, A.N., Bricka, R.M. (2013). Basics and application of electrokinetics remediation, Remediation engineering of contaminated Soils (pp. 95–111). New York, NY: Marcel Dekker Inc.Google Scholar
  12. Al-Wabel, M. I., Usman, A. R. A., El-Naggar, A. H., Aly, A. A., Ibrahim, H. M., Elmaghraby, A., et al. (2014). Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants. Saudi Journal of Biological Sciences, 22(4), 503–511.CrossRefGoogle Scholar
  13. Amezcua-Allieri, M. A., Lead, J. R., & Guez-Va´zquez, R. R. (2005). Impact of microbial activity on copper, lead and nickel mobilization during the bioremediation of soil PAHs. Chemosphere, 61(4), 484–491.CrossRefGoogle Scholar
  14. Amore, J. J. D., Al-Abed, S. R., Scheckel, K. G., & Ryan, J. A. (2005). Methods for speciation of metals in soils: a review. Journal of Environmental Quality, 34(5), 1707–1745.CrossRefGoogle Scholar
  15. Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution. In A. A. Balkema (Ed.), (pp. 311–358). Leiden: CRC Press.Google Scholar
  16. Arnesen, K. M., & Singh, B. R. (1999). Plant uptake and DTPA-extractability of Cd, Cu, Ni and Zn in a Norwegian alum shale soil as affected by previous addition of dairy and pig manures and peat. Canadian Journal of Soil Science, 78(3), 531–539.CrossRefGoogle Scholar
  17. Babu, A. G., Kim, J. D., & Oh, B. T. (2013). Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. Journal of Hazardous Materials, 250–251, 477–483.CrossRefGoogle Scholar
  18. Bade, B., Oh, S., & Shin, W. S. (2012). Assessment of metal bioavailability in smelter-contaminated soil before and after lime amendment. Ecotoxicology and Environmental Safety, 80, 299–307.CrossRefGoogle Scholar
  19. Badruddoza, A. Z. M., Tay, A. S. H., Tan, P. Y., Hidajat, K., & Uddin, M. S. (2011). Carboxymethyl-beta-cyclodextrin conjugated magnetic nanoparticles as nano-adsorbents for removal of copper ions: Synthesis and adsorption studies. Journal of Hazardous Materials, 185(2–3), 1177–1186.CrossRefGoogle Scholar
  20. Basta, N., & McGowen, S. (2004). Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 127(1), 73–82.CrossRefGoogle Scholar
  21. Beesley, L., & Marmiroli, M. (2011). The immobilization and retention of soluble arsenic, cadmium and zinc by biochar. Environmental Pollution, 159(2), 474–480.CrossRefGoogle Scholar
  22. Beesley, L., Moreno-Jimenez, E., & Gomez-Eyles, J. L. (2010). Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil. Environmental Pollution, 158(6), 2282–2287.CrossRefGoogle Scholar
  23. Bian, R., Joseph, S., Cui, L., Pan, G., Li, L., Liu, X., et al. (2014). A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment. Journal of Hazardous Materials, 272, 121–128. doi: 10.1016/j.jhazmat.CrossRefGoogle Scholar
  24. Bolan, N. S., Adriano, D. C., Mani, P., Duraisamy, A., & Arulmozhiselvan, S. (2003). Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant and Soil, 250(2), 187–198.CrossRefGoogle Scholar
  25. Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., Makino, T., et al. (2014). Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize? Journal of Hazardous Material, 266, 141–166.CrossRefGoogle Scholar
  26. Bosecker, K. (2001). Microbial leaching in environmental clean-up programs. Hydrometallurgy, 59(2–3), 245–248.CrossRefGoogle Scholar
  27. Brown, S., Chaney, R., Hallfrisch, J., Ryan, J. A., & Berti, W. R. (2004). In situ treatments to reduce the phyto- and bioavailability of lead, zinc and cadmium. Journal of Environmental Quality, 33(2), 522–531.CrossRefGoogle Scholar
  28. Brown, S. L., Sprenger, M., Maxemchuk, A., & Compton, H. (2005). Ecosystem function in alluvial tailings after biosolids and lime application. Journal of Environmental Quality, 3(1), 41–46.Google Scholar
  29. Cang, L., Zhou, D. M., Wang, Q. Y., & Wu, D. Y. (2009). Effects of electrokinetic treatment of a heavy metal contaminated soil on soil enzyme activities. Journal of Hazardous Materials, 172(2–3), 1602–1607.CrossRefGoogle Scholar
  30. Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428.CrossRefGoogle Scholar
  31. Cao, X., Wahbi, A., Ma, L., Li, B., & Yang, Y. (2009). Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid. Journal of Hazardus Materials, 164, 555–564.Google Scholar
  32. Castaldi, P., Santona, L., & Melis, P. (2005). Heavy metals immobilization by chemical amendments in a polluted soil and influence on white lupin growth. Chemosphere, 60(3), 365–371.CrossRefGoogle Scholar
  33. Chaney, R. L., Angle, J. S., Broadhurst, C. L., Peters, C. A., Tappero, R. V., & Sparks, D. L. (2007). Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. Journal of Environmental Quality, 36, 1429–1443.CrossRefGoogle Scholar
  34. Chaney, R. L., Reeves, P. G., Ryan, J. A., Simmons, R. W., Welch, R. M., & Angle, J. S. (2004). An improved understanding of soil Cd risk to humans and low cost methods to phytoextract Cd from contaminated soils to prevent soil Cd risks. BioMetals, 17(5), 549–553.CrossRefGoogle Scholar
  35. Chen, Y. H., & Li, F. A. (2010). Kinetic study on removal of copper(II) using goethite and hematite nano-photocatalysts. Journal of Colloid and Interface Science, 347(2), 277–281.CrossRefGoogle Scholar
  36. Chen, X., Wright, J., Conca, J., & Perurrung, L. (1997a). Evaluation of heavy metal remediation using mineral apatite. Water, Air, and Soil Pollution, 98(1), 57–78. doi: 10.1007/BF02128650.CrossRefGoogle Scholar
  37. Chen, X., Wright, J. V., Conca, J. L., & Peurrung, L. (1997b). Effects of pH on heavy metal sorption on mineral apatite. Environmental Science and Technology, 31(3), 624–631.CrossRefGoogle Scholar
  38. Chen, S. B., Zhu, Y. G., & Ma, Y. B. (2006). The effect of grain size of rock phosphate amendment on metal immobilization in contaminated soils. Journal of Hazardous Materials, 134(1–3), 74–79.CrossRefGoogle Scholar
  39. Cheng, S., & Hseu, Z. (2002). In-situ immobilization of cadmium and lead by different amendments in two contaminated soils. Water, Air, and Soil pollution, 140, 73–84.CrossRefGoogle Scholar
  40. Chigbo, C. H., & Batty, L. (2014). Phytoremediation for co-contaminated soils of chromium and benzo[a] pyrene using Zea mays L. Environmental Science and Pollution Research, 21(4), 3051–3059. doi: 10.1007/s11356-013-2254-0.CrossRefGoogle Scholar
  41. Choppala, G. K., Bolan, N. S., Megharaj, M., Chen, Z., & Naidu, R. (2012). The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Journal of Environmental Quality, 41, 1175–1184.CrossRefGoogle Scholar
  42. Cho-Ruk, K., Kurukote, J., Supprung, F., & Vetayasuporn, S. (2006). Perennial Plants in the phytoremediation of lead contaminated soils. Biotechnology, 5(1), 1–4.CrossRefGoogle Scholar
  43. Cocârt, D. M., Dinu, R. N., Dumitrescu, C., Reşetar-Deac, A. M., & Tanasiev, V. (2013). Risk-based approach for thermal treatment of soils contaminated with heavy metals. E3S Web of Conferences 1, 01005.Google Scholar
  44. Contin, M., Mondini, C., Leita, L., & Nobili, M. D. (2007). Enhanced soil toxic metal fixation in iron (hydr) oxides by redox cycles. Geoderma, 140(1–2), 164–175.CrossRefGoogle Scholar
  45. De Kreuk, J. F. (2005). Advantages of in situ remediation of polluted soil and practical problems encountered during its performance. In I. V. Perminova et al. (Eds.), Use of humic substances to remediate polluted environments: From theory to practice. The Netherlands: Springer.Google Scholar
  46. Deliyanni, E. A., Lazaridis, N. K., Peleka, E. N., & Matis, K. A. (2004). Metals removal from aqueous solution by iron-based bonding agents. Environmental Science and Pollution Research, 11(1), 18–21.CrossRefGoogle Scholar
  47. Dellisanti, F., Rossi, P. L., & Valdrè, G. (2009). Remediation of asbestos containing materials by Joule heating vitrification performed in a pre-pilot apparatus. International Journal of Mineral Processing, 91, 61–67.CrossRefGoogle Scholar
  48. Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils. Engineering Geology, 70(3–4), 377–394.CrossRefGoogle Scholar
  49. Devasena, M., & Nambi, I. M. (2013). In situ stabilization of entrapped elemental mercury. Journal of Environmental Management, 130, 185–191. doi: 10.1016/j.jenvman.2013.08.066.CrossRefGoogle Scholar
  50. Dijk, P., & Berkowitz, B. (1998). Precipitation and dissolution of reactive solutes in fractures. Water Resources Research, 34(3), 457–470.CrossRefGoogle Scholar
  51. Donlon, D. L., & Bauder, J. W. (2008). A general essay on bioremediation of contaminated Soil. Accessed July 22, 2013.
  52. Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: Hydrous ferric oxide. New York, NY: Wiley.Google Scholar
  53. Elliot, H. A., Liberati, M. R., & Huang, C. P. (1986). Competitive adsorption of heavy metals by soils. Journal of Environmental Quality, 3, 214–219. doi: 10.2134/jeq1986.00472425001500030002x.CrossRefGoogle Scholar
  54. Embren, B. (2016). Planting urban with biochar. The Biochar Journal.
  55. EPA. (1991). United States Environmental Protection Agency, Treatment of Lead-Contaminated Soils, Superfund Engineering Issue, 540/2-91/009.Google Scholar
  56. EPA. (1996). Recent developments for in situ treatment of metal contaminated soils. Prepared for: U.S. Environmental Protection Agency, Office of solid waste and emergency response. Technology Innovation Office, Washington, DC.Google Scholar
  57. EPA. (2001). Use of bioremediation at superfund sites. Solid waste and emergency response (5102G). U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC, 20460.Google Scholar
  58. EPA. (2002). United state Environmental protection agency, Arsenic treatment technologies for soil, water and waste, NSCEP. EPA-542-R-02-004.Google Scholar
  59. EPA. (2007). The use of soil amendments for remediation, revitalization, and reuse. Environmental Protection Agency, United States. EPA 542-R-07-013.Google Scholar
  60. ESTCP. (2000). Environmental security technology certification program. In-situ electrokinetic remediation of metal contaminated soils technology status report, US Army Environmental Center Report Number; SFIM-AEC-ET-CR-99022.Google Scholar
  61. Ettler, V. T., Omášová, Z., Komárek, M., Mihaljevič, M., Šebek, O., & Michálková, Z. (2015). The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: Implication for chemical stabilization of metals and metalloids. Journal of Hazardous Materials, 268, 386–394. doi: 10.1016/j.jhazmat.2015.01.018.
  62. Faisal, I., Tahir, H., & Ramzi, H. (2004). An overview and analysis of site remediation technologies. Journal of Environmental Management, 71, 95–122.Google Scholar
  63. Fan, M., Boonfueng, T., Xu, Y., Axe, L., & Tyson, T. A. (2005). Modeling Pb sorption to microporous amorphous oxides as discrete particles and coatings. Journal of Colloid and Interface Science, 281(1), 39–48.CrossRefGoogle Scholar
  64. FAQs. (2012). Bioremedial cleaning products for a cleaner, Greener Planet. Environmental Solution, Inc.
  65. Frankenberger, W. T., & Arshad, M. (2001). Bioremediation of selenium-contaminate sediments and water. BioFactors, 14(1–4), 241–254.CrossRefGoogle Scholar
  66. FRTR. (1999). In situ solidification/stabilization. Federal Remediation Technologies Roundtable. USEPA, S.W., Washington, DC.
  67. Garau, G., Castaldi, P., Santona, L., Deiana, P., & Melis, P. (2007). Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil. Geoderma, 142(1–2), 47–57.CrossRefGoogle Scholar
  68. Gascó, G., Paz-Ferreiro, J., & Méndez, A. (2012). Thermal analysis of soil amended with sewage sludge and biochar from sewage sludgepyrolysis. Journal of Thermal Analaysis and Calorimetry, 108(2), 769–775. doi: 10.1007/s10973-011-2116-2.CrossRefGoogle Scholar
  69. Geebelen, W., Adriano, D. C., Van der Lelie, D., Mench, M., Carleer, R., Clijsters, H., et al. (2003). Selected bioavailability assays to test the effect of amendment-induced immobilization of lead in soils. Plant and Soil, 49(1), 17–228. doi: 10.1023/A:1022534524063.CrossRefGoogle Scholar
  70. Giannis, A., Gidarakos, E., & Skouta, A. (2007). Application of sodium dodecyl sulfate and humic acid as surfactants on electrokinetic remediation of cadmium-contaminated soil. Desalination, 211(1–3), 249–260.CrossRefGoogle Scholar
  71. Gray, C. W., McLaren, R. G., & Roberts, A. H. C. (2003). Atmospheric accessions of heavy metals to some New Zealand pastoral soils. Science of the Total Environment, 305(1–3), 105–115.CrossRefGoogle Scholar
  72. Grimm, N. B., Foster, D., Groffman, P., Grove, J. M., Hopkinson, C. S., Nadelhof-fer, K. J., et al. (2008). The changing landscape: ecosystem responses tourbanization and pollution across climatic and societal gradients. Frontiers in Ecology and Environment, 6(5), 264–272. doi: 10.1890/070147.CrossRefGoogle Scholar
  73. Grobbel, L., & Wang, Z. (2012). A review of stabilization/solidification (S/s) technology for waste soil remediation. The International Information Center for Geotechnical Engineers. Accessed December 15, 2013.
  74. Guo, H., Luo, S. H., Chen, L., Xiao, X., Xi, Q., Wei, W., et al. (2010). Bioremediation of heavy metals by growing hyperaccumulaor endophytic bacterium Bacillus sp. L14. Bioresource Technology, 101(22), 8599–8605. doi: 10.1016/j.biortech.2010.06.085.CrossRefGoogle Scholar
  75. Hakeem, K. R., Sabir, M., Ozturk, M., & Murmet, A. (2014). Soil remediation and plants. In W. Ahmad, U. Najeeb & M. H. Zia (Eds.), Soil contamination with metals: Sources, types and implications. Prospects and Challenges (pp. 37–254). London: Academic Press.Google Scholar
  76. Hale, B., Evans, L., & Lambert, R. (2012). Effects of cement or lime on Cd Co, Cu, Ni, Pb, Sb and Zn mobility infield-contaminated and aged soils. Journal of Hazardous Materials, 199–200, 119–127. doi: 10.1016/j.jhazmat.2011.10.065.CrossRefGoogle Scholar
  77. Hartley, W., & Lepp, N. W. (2008). Remediation of arsenic contaminated soils by ironoxide application evaluated in terms of plant productivity, arsenic and phytotoxic metal uptake. Science of the Total Environment, 390(1), 35–44.CrossRefGoogle Scholar
  78. Hassinen, V., Vallinkoski, V. M., Issakainen, S., Tervahauta, A., Kärenlampi, S., & Servomaa, K. (2009). Correlation of foliar MT2b expression with Cd and Zn concentrations in hybrid aspen (Populus tremula × tremuloides) grown in contaminated soil. Environmental Pollution, 157, 922–930.CrossRefGoogle Scholar
  79. Hodson, M. E., Valsami-Jones, E., & Cotter-Howells, J. D. (2000). Bone meal additions as a remediation treatment for metal contaminated soil. Environmental Science and Technology, 34(16), 3501–3507. doi: 10.1021/es990972a.CrossRefGoogle Scholar
  80. Hong, C. O., Lee, D. K., Chung, D. Y., & Kim, P. J. (2007). Liming effects on cadmium stabilization in upland soil affected by gold mining activity. Archives of Environmental Contamination and Toxicology, 52, 496–502.CrossRefGoogle Scholar
  81. Hong, C. O., Lee, D. K., & Kim, P. J. (2008). Feasibility of phosphate fertilizer to immobilize cadmium in a field. Chemosphere, 70, 2009–2015.CrossRefGoogle Scholar
  82. Houben, D., Pircar, J., & Sonnet, P. (2012). Heavy metal immobilization by cost-effective amendments in a contaminated soil: Effects on metal leaching and phytoavailability. Journal of Geochemical Exploration, 123, 87–94. doi: 10.1016/j.gexplo.2011.10.004.CrossRefGoogle Scholar
  83. Hseu, Z. Y., Huang, Y. T., & His, H. C. (2014). Effects of remediation train sequence on decontamination of heavy metal-contaminated soil containing mercury. Journal of the Air and Waste Management Association, 64(9), 1013–1020.CrossRefGoogle Scholar
  84. Hsu, N. H., Wang, S. L., Lin, Y. C., Sheng, G. D., & Lee, J. F. (2009). Reduction of Cr(VI) by crop residue-derived black carbon. Environmental Science and Technology, 43, 8801–8806.CrossRefGoogle Scholar
  85. Hu, J., Chen, G. H., & Lo, I. M. C. (2005). Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Research, 39(18), 4528–4536. doi: 10.1016/j.watres.2005.05.051.CrossRefGoogle Scholar
  86. Hu, J., Chen, G. H., & Lo, I. M. C. (2006). Selective removal of heavy metals from industrial wastewater using maghemite nanoparticle: Performance and mechanisms. Journal of Environmental Engineering, 132, 709–715.CrossRefGoogle Scholar
  87. Hua, M., Zhang, S., Pan, B., Zhang, W., Lv, L., & Zhang, Q. (2012). Heavy metal removal from water/wastewater by nanosized metal oxides: a review. Journal of the Hazardous Materials, 211, 317–331. doi: 10.1016/j.jhazmat.2011.10.016.CrossRefGoogle Scholar
  88. Hytiris, N., Fotis, P., Stavraka, T. D., Bennabi, A., & Hamzaoui, R. (2015). Leaching and mechanical behaviour of solidified/stabilized nickel contaminated soil with cement and geosta, I. International Journal of Environmental Pollution and Remediation, 3, 1–8. doi: 10.11159/ijepr.2015.001.CrossRefGoogle Scholar
  89. Illera, V., Garrido, F., Serrano, S., & Garcia-Gonzalez, M. (2004). Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and limerich industrial by-products. European Journal of Soil Science, 55(1), 135–145. doi: 10.1046/j.1365-2389.2003.00583.x.CrossRefGoogle Scholar
  90. Iskandar, I. K. (2001). Environmental restoration of metals-contaminated soils. TD 87.M47 E58, pp. 218–219.Google Scholar
  91. Iskandar, I. K., & Adriano, D. C. (1997). Remediation of soils contaminated with metals. A review of current practices. In I. K. Iskandar & D. C. Adriano (Eds.), Remediation of soils contaminated with metals, science reviews (pp. 1–26). Northwood, NY: CRC Press.Google Scholar
  92. Joseph, S., Husson, O., Graber, E. R., van Zwieten, L., Taherymoosavi, S., Thomas, T., et al. (2015). The electrochemical properties of biochars and how they affect soil redox properties and processes. Agronomy, 5(3), 322–340.CrossRefGoogle Scholar
  93. Juris, B., Karina, S., Ikrema, H., Reinis, J., & Sandris, L. (2015). Removal of heavy metals from contaminated soils by electrokinetic remediation., e-mail:, Scholar
  94. Kabata-Pendias, A., & Pendias, H. (2001). Trace metals in soils and plants. Boca Raton, FL: CRC Press (Ed.3). Visit the CRC Press Web site at
  95. Kanabo, I. A. K., & Gilkes, R. (1987). The role of soil pH in the dissolution of phosphate rock fertilizers. Fertilizer Research Journal, 12, 165–174.CrossRefGoogle Scholar
  96. Kashem, M. A., & Singh, B. R. (2001). Metal availability in contaminated soil: II. Uptake of Cd, Ni and Zn in rice plants grown under flooded culture with organic matter addition. Nutrient Cyclic Agroecosystems, 61(3), 257–266. doi: 10.1023/A:1013724521349.CrossRefGoogle Scholar
  97. Katsoyiannis, I. A., & Zouboulis, A. I. (2004). Application of biological processes for the removal of arsenic from groundwaters. Water Research, 38, 17–26.CrossRefGoogle Scholar
  98. Ko, I. W., Lee, C. H., Lee, K. P., Lee, S. W., & Kim, K. W. (2006). Remediation of soil contaminated with arsenic, zinc, and nickel by pilot-scale soil washing. Environmental Progress, 25(1), 39–48.CrossRefGoogle Scholar
  99. Koretsky, C. (2000). The significance of surface complexation reactions in hydrologic systems: a geochemist’s perspective. Journal of Hydrology, 230(3–4), 127–171. doi: 10.1016/S0022-1694(00)00215-8.CrossRefGoogle Scholar
  100. Kotas, J., & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation. Environmental Pollution, 10(7), 263–283.CrossRefGoogle Scholar
  101. Kumpiene, J. (2010). Trace element immobilization in soil using amendments. In P. Hooda (Ed.), Trace elements in soils (pp. 353–380). Wiltshire: Wiley.CrossRefGoogle Scholar
  102. Kumpiene, J., Guerri, G., Landi, L., Pietramellara, G., Nannipieri, P., & Renella, G. (2009). Microbial biomass, respiration and enzyme activities after in situ aided phytostabilization of a Pb- and Cu-contaminated soil. Ecotoxicology and Environmental Safety, 72(1), 115–119. doi: 10.1016/j.ecoenv.2008.07.002.CrossRefGoogle Scholar
  103. Kumpiene, J., Ore, S., Renella, G., Mench, M., Lagerkvist, A., & Maurice, C. (2006). Assessment of zerovalent iron for stabilization of chromium copper, and arsenic in soil. Environmental Pollution, 144(1), 62–69. doi: 10.1016/j.envpol.2006.01.010.CrossRefGoogle Scholar
  104. Kuppusamy, S., Palanisami, T., Megharaj, M., Venkateswarlu, K., & Naidu, R. (2016). Ex-situ remediation technologies for environmental pollutants: A critical perspective. In P. de Voogt (Ed.), Reviews of environmental contamination and toxicology (Vol. 236). Switzerland: Springer. doi: 10.1007/978-3-319-20013-2_2.
  105. Kurniati, E., Arfarita, N., Imai, T., Higuchi, T., Kanno, A., Yamamoto, K., et al. (2014). Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. Journal of Environmental Sciences, 26(6), 1223–1231. doi: 10.1016/S1001-0742(13)60592-6.CrossRefGoogle Scholar
  106. Kwiatkowska, J., DĊbska, B., Maciejewska, A., & Gonet, S. (2005). Brown coal as the factor forming the properties of soil organic matter. Roczniki Gleboznawcze Tom LVI NR, 3(4), 31–41.Google Scholar
  107. Lamb, D. T., Ming, H., Megharaj, M., & Naidu, R. (2009). Heavy metal (Cu, Zn Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils. Journal of Hazardous Material, 171, 1150–1158.CrossRefGoogle Scholar
  108. Laperche, V., Traina, S. J., Gaddam, P., & Logan, T. J. (1996). Chemical and mineralogical characterizations of Pb in a contaminated soil: Reactions with synthetic apatite. Environmental Science and Technology, 30, 3321–3326.CrossRefGoogle Scholar
  109. Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanisms. Journal of Environmental Quality, 31, 109–120.CrossRefGoogle Scholar
  110. Lee, S. H., Lee, J. S., Choi, Y. J., & Kim, J. G. (2009). In situ stabilization of cadmium-, lead-, and zinc-contaminated soil using various amendments. Chemosphere, 77(8), 1069–1075. doi: 10.1016/j.chemosphere.2009.08.056.CrossRefGoogle Scholar
  111. Lehmann, J., Rillig, M. C., Thies, J., Masiello, C. A., Hockaday, W. C., & Crowley, D. B. (2011). Biochar effects on soil biota. A review. Soil Biology and Biochemistry, 43(9), 1812–1836.CrossRefGoogle Scholar
  112. Li, Z., & Zhang, T. (2013). Vitrification, The International Information Center for Geotechnical Engineers.
  113. Li, J., Zhang, G. N., & Li, Y. (2010). Review on the remediation technologies of POPs. Hebei Environmental Science, 65(8), 1295–1299.Google Scholar
  114. Lindsay, W. L. (1979). Chemical equilibria in soils. New York, NY: Wiley.Google Scholar
  115. Liu, W., Wei, D., Mi, J., Shen, Y., Cui, B., & Han, C. (2015). Immobilization of Cu(II) and Zn(II) in simulated polluted soil using sulfurizing agent. Chemical Engineering Journal, 277, 312–317.CrossRefGoogle Scholar
  116. Lodolo, A. (2014). Ex situ treatment technologies, EUGRIS: Portal for soil and water management in Europe. Accessed October 12, 2014.
  117. Loganathan, P., Hedley, M. J., & Grace, N. D. (2008). Pasture soils contaminated with fertilizer derived cadmium and fluoride: Livestock effects. Reviews of Environmental Contamination and Toxicology, 192, 29–66.Google Scholar
  118. Lu, H., Zhang, Y. Y., Huang, X., Wang, S., & Qiu, R. (2012). Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research, 46(3), 854–862. doi: 10.1016/j.watres.2011.11.058.CrossRefGoogle Scholar
  119. Luo, Q. S., Zhang, X. H., & Wang, H. (2004). Mobilization of 2,4-dichlorophenol in soils by non-uniform electrokinetics. Acta Scientiae Circumstantiae, 24, 1104–1109.Google Scholar
  120. Lv, L. L., Jin, M. Y., & Li, B. W. (2009). Study on remediation of the soil contaminated with cadmium by applying four minerals. Journal of Agricultural University of Hebei, 32, 1–5.Google Scholar
  121. Ma, L. Q., Komar, K. M., Tu, C., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyperaccumulates arsenic. Nature, 409, 579. doi: 10.1038/35054664.
  122. Ma, L. Q., & Rao, G. N. (1997). Effects of phosphate rock on sequential chemical extraction of lead in contaminated soils. Journal of Environmental Quality, 26, 788–794.CrossRefGoogle Scholar
  123. Macdonald, J. E., & Veinot, J. G. C. (2008). Removal of residual metal catalysts with iron/iron oxide nanoparticles from coordinating environments. Langmuir, 24, 7169–7177. doi: 10.1021/la8006734.CrossRefGoogle Scholar
  124. Mahimairaj, S., Bolan, N. S., Adriano, D., & Robinson, B. (2005). Arsenic contamination and its risk management in complex environmental settings. Advanced Agronomy, 86, 1–82.CrossRefGoogle Scholar
  125. Maity, J. P., Huang, Y., Fan, C. W., Chen, C. C., Li, C. Y., Hsu, C. M., et al. (2013). Evaluation of remediation process with soapberry derived saponin for removal of heavy metals from contaminated soils in Hai-Pu. Taiwan. Journal of Environmental Sciences, 25(6), 1180–1185.CrossRefGoogle Scholar
  126. Makino, T., Kamiya, T., Takano, H., Itou, T., Sekiya, N., Sasaki, K., et al. (2007). Remediation of cadmium-contaminated paddy soils by washing with calcium chloride—Verification of on-site washing. Environmental Pollution, 147(1), 112–119. doi: 10.1016/j.envpol.2006.01.017.CrossRefGoogle Scholar
  127. Manceau, A., Charlet, L., Boisset, M. C., Didier, B., & Spadini, L. (1992). Sorption and speciation of heavy metals on hydrous Fe and Mn oxides, From microscopic to macroscopic. Applied Clay Science, 7(1–3), 201–223.CrossRefGoogle Scholar
  128. Marsz, A. M. (2014). Remediation of metal contaminated soils (evaluation of long-term effects of zero-valent iron amendments). Master’s thesis in environmental Science. EnvEuro-European Master in Environmental Science.
  129. Martin, T. A., & Ruby, M. V. (2004). Review of in situ remediation technologies for lead, zinc and cadmium in soil. Remediation Journal, 14, 35–53. doi: 10.1002/rem.20011.CrossRefGoogle Scholar
  130. McGowen, S. L., Basta, N. T., & Brown, G. O. (2001). Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. Journal of Environmental Quality, 30, 493–500.CrossRefGoogle Scholar
  131. McLean, J. E., & Bledsoe, B. E. (1992). Behavior of metals in soils, EPA Ground Water Issue, EPA 540-S-92-018.Google Scholar
  132. Means, J. L. (1995). The application of solidification/stabilization to waste materials. Boca Raton, FL: Lewis Publishers.Google Scholar
  133. Memon, A. R., Aktoprakligil, D., Ozdemir, A., & Vertii, A. (2001). Heavy metal accumulation and detoxification mechanisms in plants. Turkish Journal of Botany, 25, 111–121.Google Scholar
  134. Memon, A. R., & Schröder, P. I. (2009). Implications of metal accumulation mechanisms to phytoremediation. Environmental Science and Pollution Research, 16, 162–175.CrossRefGoogle Scholar
  135. Moon, D. H., Grubb, D. G., & Reilly, T. L. (2009). Stabilization/solidification of selenium-impacted soils using Portland cement and cement kiln dust. Journal of Hazardous Materials, 168(2–3), 944–951. doi: 10.1016/j.jhazmat.2009.02.125.CrossRefGoogle Scholar
  136. Muddarisna, N., Krisnayanti, B. D., Utami, S. R., & Handayanto, E. (2013). Phytoremediation of Mercury-contaminated soil using three wild plant species and its effect on maize growth. Applied Ecology and Environmental Sciences, 1(3), 27–32. doi: 10.12691/aees-1-3-1.CrossRefGoogle Scholar
  137. Myneni, S. C. B., Tokunaga, T. K., & Brown, J. (1997). Abiotic selenium redox transformations in the presence of Fe(II,III) oxides. Science, 278, 1106–1109.CrossRefGoogle Scholar
  138. Naidu, R., Kookana, R. S., Sumner, M. E., Harter, R. D., & Tiller, K. G. (1997). Cadmium sorption and transport in variable charge soils: A review. Journal of Environmental Quality, 26, 602–617.CrossRefGoogle Scholar
  139. Naseri, E., Reyhanitabar, A., Oustan, S., Heydari, A. A., & Alidokht, L. (2014). Optimization arsenic immobilization in a sandy loam soil using iron-based amendments by response surface methodology. Geoderma, 232–234, 547–555.CrossRefGoogle Scholar
  140. Navarro, A., Cardellach, E., Cañadas, I., & Rodríguez, J. (2013). Solar thermal vitrification of mining contaminated soils. International Journal of Mineral Processing, 119, 65–74.CrossRefGoogle Scholar
  141. Nordmark, D., Kumpiene, J., Andreas, L., & Lagerkvist, A. (2011). Mobility and fractionation of arsenic, chromium and copper in thermally treated soil. Waste Management and Research, 29(1), 3–12. doi: 10.1177/0734242X10382819.CrossRefGoogle Scholar
  142. Nriagu, J. O. (1974). Lead Orthophosphates. IV—Formation and stability in the environment. Geochimica et Cosmochimica Acta, 38, 887–898.CrossRefGoogle Scholar
  143. O’Loughlin, E. J., Kelly, S. D., Kemner, K. M., Csencsits, R., & Cook, R. E. (2003). Reduction of Ag I, Au III, Cu II, and Hg II by Fe II/Fe III hydroxysul fate green rust. Chemosphere, 53, 437–446.CrossRefGoogle Scholar
  144. Ok, Y. S., Lim, J. E., & Moon, D. H. (2011). Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environmental Geochemistry and Health, 33, 83–91.CrossRefGoogle Scholar
  145. Olegario, J., Yee, N., Miller, M., Sczepaniak, J., & Manning, B. (2010). Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions. Journal of Nanoparticle Research, 12, 2057–2068.CrossRefGoogle Scholar
  146. Ottosen, L. M., Jensena, P. E., Kirkelunda, G. M., Ferreira, C. D., & Hansen, H. K. (2012). Electrodialytic remediation of heavy metal polluted soil—Treatment of water saturated or suspended soil. Chemical Engineering Transactions, 28, 103–108.Google Scholar
  147. Ouhadi, V. R., Yong, R. N., Shariatmadari, N., Saeidijama, S. A., Goodarzi, R., & Safari-Zanjani, M. (2010). Impact of carbonate on the efficiency of heavy metal removal from kaolinite soil by the electrokinetic soil remediation method. Journal of Hazardous Materials, 173(1–3), 7–94.Google Scholar
  148. Ou-Yang, X., Chen, J. W., & Zhang, X. G. (2010). Advance in supercritical CO2 fluid extraction of contaminants from soil. Geological Bulletin of China, 29(11), 1655–1661.Google Scholar
  149. Pare, J. (2006). In-situ and ex situ soil and groundwater remediation using chemical oxidation technologies. CHEMCO, Solutions and Environmental Products Waters-Soils-Air.Google Scholar
  150. Park, J. H., Bolan, N. S., Chung, J. W., & Naidu, R. (2010). Isolation of phosphate-solubilizing bacteria and characterization of their effects on lead immobilization. Journal of Hazardous Material, 185, 829–836.CrossRefGoogle Scholar
  151. Park, J. H., Choppala, G. K., Bolan, N. S., Chung, J. W., & Chuasavathi, T. (2011). Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant and Soil, 348, 439–451.CrossRefGoogle Scholar
  152. Park, J., Jung, Y., Han, M., & Lee, S. (2002). Simultaneous removal of cadmium and turbidity in contaminated soil-washing water by DAF and electroflotation. Water Science and Technology, 46(11–12), 225–230.CrossRefGoogle Scholar
  153. Paz-Ferreiro, J., & Fu, S. (2014). Biological indices for soil quality evaluation: Perspectives and limitations. Land Degrad. Dev. Published online in Wiley Online Library ( doi: 10.1002/ldr.2262doi.
  154. Pearson, M. S., Maenpaa, K., Pierzynski, G. M., & Lydy, M. J. (2000). Effects of soil amendment on the bioavailbility of lead, zink and cadmium to earthworms. Journal of Environmental Quality, 29(5), 1611–1617. doi: 10.2134/jeq2000.00472425002900050031x.CrossRefGoogle Scholar
  155. Pierzynski, G. M., Sims, J. T., & Vance, G. F. (2000). Soils and environmental quality (2nd ed., p. 584). London: CRC Press.Google Scholar
  156. Pinto, A. P., Mota, A. M., de Varennes, A., & Pinto, F. C. (2004). Influence of organic matter on the uptake of cadmium, zinc, copper and iron by sorghum plants. Science of the Total Environment, 326(1–3), 239–247.CrossRefGoogle Scholar
  157. Porter, S. K., Scheckel, K. G., Impellitteri, C. A., & Ryan, J. A. (2004). Toxic metals in the environment: Thermodynamic considerations for possible immobilisation strategies for Pb, Cd, As, and Hg. Critical Review in Environmental Science and Technology, 34(6), 495–604.CrossRefGoogle Scholar
  158. Qian, S. Q., & Liu, Z. (2000). An overview of development in the soil-remediation technologies. Chemical Industrial and Engineering Process, 4(10–2), 20.Google Scholar
  159. Rajendran, P., Muthukrishnan, J., & Gunasekaran, P. (2003). Microbes in heavy metal remediation. Indian Journal of Experimental Biology, 41, 935–944.Google Scholar
  160. Ramalingam, V. (2013). Electrokinetic remediation—Disadvantages. The International Information Center for geotechnical engineers.
  161. Reddy, K. R. (2009). Electrokinetical remediation technologies for polluted soils, sediments and groundwater (pp. 324–325). Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  162. Reddy, K. R., Chaparro, C., & Saichek, R. E. (2003). Removal of mercury from clayey soils using electrokinetics. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances and Environmental Engineering, 38(2), 307–338.Google Scholar
  163. Refait, P., Simon, L., & Génin, J. M. R. (2000). Reduction of SeO4 2− anions and anoxic formation of iron(II)–iron(III) hydroxy selenate green rust. Environmental Science and Technology, 34, 819–825.CrossRefGoogle Scholar
  164. Ren, W. X., Li, P. J., Geng, Y., & Li, X. J. (2009). Biological leaching of heavy metals from a contaminated soil by Aspergillus niger. Journal of Hazardous Materials, 167(1–3), 164–169.CrossRefGoogle Scholar
  165. Renholds, J. (1998). In situ treatment of contaminated sediments. Prepared for U.S. Environmental Protection Agency. Accessed March 9, 2014.
  166. Ricou-Hoeffer, P., Hequet, V., Lecuyer, I., & Le Cloirec, P. (2000). Adsorption and stabilization of nickel ions on fly ash/lime mixing. Water Science and Technology, 42, 79–84.CrossRefGoogle Scholar
  167. Ritchie, G. S. P. (1994). Role of dissolution and precipitation of minerals in controlling soluble aluminum in acidic soil.
  168. Ruttens, A., Colpaert, J., Mench, M., Boisson, J., Carleer, R., & Vangronsveld, J. (2006). Phytostabilization of a metal contaminated sandy soil. II. Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Environmental Pollution, 144(2), 533–539.CrossRefGoogle Scholar
  169. Sauge-Merle, S., Lecomte-Pradines, C., Carrier, P., Cuiné, S., & DuBow, M. (2012). Heavy metal accumulation by recombinant mammalian metallothionein within Escherichia coli protects against elevated metal exposure. Chemosphere, 88(8), 918–924.CrossRefGoogle Scholar
  170. Schindler, P. W., Fürst, B., Dick, R., & Wolf, P. U. (1976). Ligand properties of surface silanol groups. I. Surface complex formation with Fe3+, Cu2+, Cd2+, and Pb2+. Journal of Colloid and Interface Science, 55(2), 469–475.CrossRefGoogle Scholar
  171. Schott, J., Pokrovsky, O., & Oelkers, E. (2009). The link between mineral dissolution/precipitation kinetics and solution chemistry. The Mineralogical Society of America, 70, 207–258.Google Scholar
  172. Shen, Z. G., & Chen, H. M. (2000). Bioremediation of heavy metal polluted soils. Rural Eco-Environment, 16(2), 39–44.Google Scholar
  173. Sherwood, L. J., & Qualls, R. G. (2001). Stability of phosphorus within a wetland soil following ferric chloride treatment to control eutrophication. Environmental Science and Technology, 35(20), 4126–4131.CrossRefGoogle Scholar
  174. Shulgin, A. I., & Hagerty, D. J. (2008). Immobilizing arsenic in contaminated soil using humic mineral concentrates. GeoCongress (Geotechnics of Waste Management and Remediation), 812–818. doi: 10.1061/40970%28309%29102.
  175. Shuman, L. M. (1991). Chemical forms of micronutrients in soils. In J. J. Mortvedt, F. R. Cox, L. M. Shuman, & R. M. Welch (Eds.), Micronutrients in agriculture (pp. 113–144). Madison, WI: Soil Science Society of America.Google Scholar
  176. Silveira, M. L. A., Alleoni, L. R. F., & Guilherme, L. R. G. (2003). Review: Biosolids and heavy metals in soils. Scientia Agricola, 60, 793–806.CrossRefGoogle Scholar
  177. Skáodowski, P., Maciejewska, A., & Kwiatkowska, J. (2006). The effect of organic matter from brown coal on bioavailability of heavy metals in contaminated soils. Soil and Water Pollution Monitoring, Protection and Remediation, 69, 3–23.CrossRefGoogle Scholar
  178. Sneddon, I. R., Orueetxebarria, M., Hodson, M. E., Schofield, P. F., & Valsami-Jones, E. (2006). Use of bone meal amendments to immobilise Pb, Zn and Cd in soil: A leaching column study. Environmental Pollution, 144(3), 816–825.CrossRefGoogle Scholar
  179. Sposito, G. (1984). The surface chemistry of soils. New York, NY: Oxford University Press.Google Scholar
  180. Srivastavaa, S. H., & Thakur, I. S. (2006). Evaluation of bioremediation and detoxification potentiality of Aspergillus niger for removal of hexavalent chromium in soil microcosm. Soil Biology and Biochemistry, 38(7), 1904–1911.CrossRefGoogle Scholar
  181. Stegmann, R., Brunner, G., Calmano, W., & Matz, G. (2001). Treatment of contaminated soil: Fundamentals, analysis, applications. Berlin: Springer.CrossRefGoogle Scholar
  182. Tampouris, S., Papassiopi, N., & Paspaliaris, I. (2001). Removal of contaminant metals from fine grained soils, using agglomeration, chloride solutions and pile leaching techniques. Journal of Hazardous Material, 84(2–3), 297–319.CrossRefGoogle Scholar
  183. Tang, X., Li, X., Liu, X., Hashim, M. Z., Xu, J., & Brookes, P. C. (2014). Effects of inorganic and organic amendments on the uptake of lead and trace elements by Brassica chinensis grown in an acidic red soil. Chemosphere, 119, 177–183.CrossRefGoogle Scholar
  184. Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology (pp. 133–164). Berlin: Springer.Google Scholar
  185. Terry, N., & Banuelos, G. (2000). Phytoremediation of contaminated soils and water. USA: CRC Press.Google Scholar
  186. Todorovic, Z. B., Randelovic, L. M., Marjanovic, J. Z., Todorovic, V. M., Cakic, M. D., & Cvetkovic, O. G. (2014). The assessment and distribution of heavy metals in surface sediments from the reservoir “Barje” (Serbia). Advanced Technologies, 3(2), 85–95.Google Scholar
  187. Tokunaga, S., & Hakuta, T. (2002). Acid washing and stabilization of an artificial arsenic-contaminated soil. Chemosphere, 46, 31–38.CrossRefGoogle Scholar
  188. Uchimiya, M., Chang, S., & Klasson, K. T. (2011). Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. Journal of Hazardous Materials, 190(1–3), 432–441.CrossRefGoogle Scholar
  189. Uchimiya, M., Lima, I. M., Klasson, K. T., & Wartelle, L. H. (2010). Contaminant immobilization and nutrient release by biochar soil amendment: Roles of natural organic matter. Chemosphere, 80(8), 935–940.CrossRefGoogle Scholar
  190. USDA. (1999). Liming to improve soil quality in acidic soils. Soil Quality-Agronomy Technical Note No. 8. United State Department of Agriculture.Google Scholar
  191. USEPA. (1990). Interference mechanisms in waste stabilization/solidification processes. Tech. Rep. EPA/540/A5-89/004, United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.Google Scholar
  192. USEPA. (1996). Innovative treatment technologies, annual status report, 8th edn. EPA/542/R-96/010, USEPA, Washington, DC.Google Scholar
  193. USEPA. (1997). Recent developments for in situ treatment of metal contaminated soils. Tech. Rep. EPA-542-R-97-004, USEPA, Washington, DC, USA.Google Scholar
  194. USEPA. (2012). Solidification, from contaminated sites clean-up information. Accessed May 23, 2014.
  195. van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant and Soil, 362, 319–334.CrossRefGoogle Scholar
  196. Vangronsveld, J., Colpaert, J. V., & Van Tichelen, K. K. (1996). Reclamation of a bare industrial area contaminated by non-ferrous metals: Physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environmental Pollution, 94(2), 131–140.CrossRefGoogle Scholar
  197. Vasile Pavel, L., & Gavrilescu, M. (2008). Overview of ex situ decontamination techniques for soil cleanup. Environmental Engineering and Management Journal, 7(6), 815–834.Google Scholar
  198. Wang, L. K., Vaccari, D. A., Li, Y., & Shammas, N. K. (2005). Chemical precipitation. In L. K. Wang, Y. T. Hung, & N. K. Shammas (Eds.), Physicochemical treatment processes (pp. 141–197). Totowa, NJ: Humana Press.CrossRefGoogle Scholar
  199. Wang, L., Yuan, X., Zhong, H., Wang, H., Wu, Z., Chen, X., et al. (2014). Release behavior of heavy metals during treatment of dredged sediment by microwave-assisted hydrogen peroxide oxidation. Chemical Engineering Journal, 258, 334–340.CrossRefGoogle Scholar
  200. Wang, J., Zheng, S., Shao, Y., Liu, Z., Xu, J., & Zhu, D. (2010). Amino-functionalized Fe3O4&SiO2 core–shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal. Journal of Colloid and Interface Science, 349(1), 293–299.CrossRefGoogle Scholar
  201. Whitacre, D. M. (2013). Reviews of environmental contamination and toxicology. New York Heidelberg, Dordrecht, London: Springer.Google Scholar
  202. Wong, M. H. (2003). Ecological restoration of degraded soils with emphasis on metal contaminated soils. Chemosphere, 50(6), 775–780.CrossRefGoogle Scholar
  203. Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., et al. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy, 47, 268–276.CrossRefGoogle Scholar
  204. Wuana, R. A., Okieimen, F. E., & Imborvungu, J. A. (2010). Removal of heavy metals from a contaminated soil using organic chelating acids. International Journal of Environmental Science and Technology, 7(3), 485–496.CrossRefGoogle Scholar
  205. Yao, Z., Lib, J., Xie, H., & Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. The 7th international conference on waste management and technology. Procedia Environmental Sciences, 16, 722–729.CrossRefGoogle Scholar
  206. Yu-Ling, W. (2012). Thermal immobilization of lead contaminants in soils treated in a fixed- and fluidized-bed incinerator at moderate temperatures. Journal of the Air and Waste Management Association, 45(6), 422–429. doi: 10.1080/10473289.1996.10467475.CrossRefGoogle Scholar
  207. Zaman, M. I., Mustafa, S., Khan, S., & Xing, B. (2009). Effect of phosphate complexation on Cd2+ sorption by manganese dioxide (b-MnO2). Journal of Colloid and Interface Science, 330(1), 9–19. doi: 10.1016/j.jcis.2008.10.053.CrossRefGoogle Scholar
  208. Zhang, Y., & Frankenberger, W. T. (2003). Factors affecting removal of selenate in agricultural drainage water utilizing rice straw. Science of the Total Environment, 305, 207–216.CrossRefGoogle Scholar
  209. Zhang, X. H., Wang, H., & Luo, Q. S. (2001). Electrokinetics in remediation of contaminated groundwater and soils. Advances in Water Resources, 12(2), 249–255.Google Scholar
  210. Zhang, T., Zou, H., Ji, M., Li, X., Li, L., & Tang, T. (2014). Enhanced electrokinetic remediation of lead-contaminated soil by complexing agents and approaching anodes. Environmental Science and Pollution Research, 21(4), 3126–3133.CrossRefGoogle Scholar
  211. Zhao, Z., Jiang, G., & Mao, R. (2014). Effects of particle sizes of rock phosphate on immobilizing heavy metals in lead zinc mine soils. Journal of Soil Science and Plant Nutrition, 14(2), 258–266.Google Scholar
  212. Zhou, D. M., Hao, X. Z., & Xue, Y. (2004). Advances in remediation technologies of contaminated soils. Ecology and Environmental Science, 13(2), 234–242.Google Scholar
  213. Zhou, H., Zhou, X., Zeng, M., Liao, B. H., Liu, L., Yang, W. T., et al. (2014). Effects of combined amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on contaminated paddy soil. Ecotoxicology and Environmental Safety, 101, 226–232.CrossRefGoogle Scholar
  214. Zhu, J., Cozzolino, V., Fernandez, M., Sánchez, R. M. T., Pigna, M., Huang, Q., et al. (2011a). Sorption of Cu on a Fe-deformed montmorillonite complex: Effect of pH, ionic strength, competitor heavy metal, and inorganic and organic ligands. Applied Clay Science, 52(4), 339–344.CrossRefGoogle Scholar
  215. Zhu, J., Pigna, M., Cozzolino, V., Caporale, A. G., & Violante, A. (2011b). Sorption of arsenite and arsenate on ferrihydrite: Effect of organic and inorganic ligands. Journal of Hazardous Materials, 189(1–2), 564–571.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Zahra Derakhshan Nejad
    • 1
  • Myung Chae Jung
    • 1
  • Ki-Hyun Kim
    • 2
  1. 1.Department of Energy and Mineral Resources EngineeringSejong UniversitySeoulSouth Korea
  2. 2.Department of Civil and Environment EngineeringHanyang UniversitySeoulSouth Korea

Personalised recommendations