Environmental Geochemistry and Health

, Volume 38, Issue 3, pp 783–810 | Cite as

Effects of chemical elements in the trophic levels of natural salt marshes

  • Piotr Kamiński
  • Tadeusz Barczak
  • Janina Bennewicz
  • Leszek Jerzak
  • Maria Bogdzińska
  • Oleg Aleksandrowicz
  • Beata Koim-Puchowska
  • Małgorzata Szady-Grad
  • Jacek J. Klawe
  • Alina Woźniak
Original Paper


The relationships between the bioaccumulation of Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Co, Cd, and Pb, acidity (pH), salinity (Ec), and organic matter content within trophic levels (water–soil–plants–invertebrates) were studied in saline environments in Poland. Environments included sodium manufactures, wastes utilization areas, dumping grounds, and agriculture cultivation, where disturbed Ca, Mg, and Fe exist and the impact of Cd and Pb is high. We found Zn, Cu, Mn, Co, and Cd accumulation in the leaves of plants and in invertebrates. Our aim was to determine the selectivity exhibited by soil for nutrients and heavy metals and to estimate whether it is important in elucidating how these metals are available for plant/animal uptake in addition to their mobility and stability within soils. We examined four ecological plant groups: trees, shrubs, minor green plants, and water macrophytes. Among invertebrates, we sampled breastplates Malacostraca, small arachnids Arachnida, diplopods Diplopoda, small insects Insecta, and snails Gastropoda. A higher level of chemical elements was found in saline polluted areas (sodium manufactures and anthropogenic sites). Soil acidity and salinity determined the bioaccumulation of free radicals in the trophic levels measured. A pH decrease caused Zn and Cd to increase in sodium manufactures and an increase in Ca, Zn, Cu, Cd, and Pb in the anthropogenic sites. pH increase also caused Na, Mg, and Fe to increase in sodium manufactures and an increase in Na, Fe, Mn, and Co in the anthropogenic sites. There was a significant correlation between these chemical elements and Ec in soils. We found significant relationships between pH and Ec, which were positive in saline areas of sodium manufactures and negative in the anthropogenic and control sites. These dependencies testify that the measurement of the selectivity of cations and their fluctuation in soils provide essential information on the affinity and binding strength in these environments. The chemical elements accumulated in soils and plants; however, further flow is selective and variable. The selectivity exhibited by soil systems for nutrients and heavy metals is important in elucidating how these metals become available for plant/animal uptake and also their mobility and stability in soils.


Trophic links Saline environments Ecotoxicology Disturbed areas Heavy metals Acidity 



We thank Professor Brendan P. Kavanagh (Royal College of Surgeons in Ireland) for his help with improving English language of this paper.


  1. Adams, B. M., Banks, H. T., Banks, J. E., & Stark, J. D. (2005). Population dynamics models in plant–insect herbivore–pesticide interactions. Mathematical Biosciences, 196(1), 39–64.CrossRefGoogle Scholar
  2. Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum, 53(2), 243–248.CrossRefGoogle Scholar
  3. Ajmal Khan, M., Ungar, I. A., & Showalter, A. M. (2002). Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Annals of Botany, 85, 225–232.CrossRefGoogle Scholar
  4. Alloway, B. J., Jackson, A. P., & Morgan, H. (1990). The accumulation of cadmium by vegetables grown on soils contaminated from a variety of sources. Science of the Total Environment, 91, 223–236.CrossRefGoogle Scholar
  5. Andrews, S. M., Johnson, M. S., & Cooke, J. A. (1989a). Distribution of trace element pollutants in a contaminated grassland ecosystem established on metalliferous fluorspar tailings—1: Lead. Environmental Pollution, 58, 73–85.CrossRefGoogle Scholar
  6. Andrews, S. M., Johnson, M. S., & Cooke, J. A. (1989b). Distribution of trace element pollutants in a contaminated grassland ecosystem established on metalliferous fluorspar tailings—2: Zinc. Environmental Pollution, 59, 241–252.CrossRefGoogle Scholar
  7. Appel, C., Ma, L. Q., Rhue, R. D., & Reve, W. (2003). Selectivities of potassium–calcium and potassium–lead exchange in two tropical soils. Soil Science Society of America Journal, 67, 1707–1714.CrossRefGoogle Scholar
  8. Askaril, H., Edqvist, J., Hajheidaril, M., Kafi, M., & Salekdeh, G. H. (2006). Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics, 6, 2542–2554.CrossRefGoogle Scholar
  9. Ayeni, O. O., Ndakidemi, P. A., Snyman, R. G., & Odendaal, J. P. (2010). Chemical, biological and physiological indicators of metal pollution in wetlands. Scientific Research and Essays, 5(15), 1938–1949.Google Scholar
  10. Ayyappan, D., Balakrishnan, V., & Ravindran, K. C. (2013). Potentiality of salt marsh halophyte on restoration of saline agricultural soil. World Applied Sciences Journal, 28(12), 2026–2032.Google Scholar
  11. Ayyappan, D., Balakrishnan, V., & Ravindran, K. C. (2014). Phytoextraction of heavy metals and ions from tannery effluent using Suaeda monoica Forsk. with reference to morphology and anatomical characters. International Journal of Current Research and Review, 2(9), 292–304.Google Scholar
  12. Banus, M. D., Valiela, I., & Teal, J. M. (1975). Pb, Zn, and Cd budgets in experimentally enriched salt marsh ecosystems. Estuarine Coastal Marine Sci., 3, 421–430.CrossRefGoogle Scholar
  13. Bargagli, R. (1998). Trace elements in terrestrial plants: An ecophysiological approach to biomonitoring and biorecovery. Berlin: Springer.Google Scholar
  14. Barnabas, A. D., Przybyłowicz, W. J., Mesjasz-Przybyłowicz, J., & Pineda, C. A. (1999). Nuclear microprobe studies of elemental distribution in the seagrass Thalassodendron ciliatum. Nuclear Instruments and Methods in Physics Research B, 158, 323–328.CrossRefGoogle Scholar
  15. Barrett-Lennard, E. G. (2002). Restoration of saline land through revegetation. Agricultural Water Management, 53, 213–226.CrossRefGoogle Scholar
  16. Batzer, D. P. (2013). The seemingly intractable ecological responses of invertebrates in North American wetlands: A review. Wetlands, 33, 1–15.CrossRefGoogle Scholar
  17. Bezel, V. S., Pozolotina, V. N., Bel’skii, E. A., & Zhuikova, T. V. (2001). Variation in population parameters: Adaptation to toxic environmental factors. Russian Journal of Ecology, 32(6), 413–419.CrossRefGoogle Scholar
  18. Bonanno, G. (2011). Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicology and Environmental Safety, 74, 1057–1064.CrossRefGoogle Scholar
  19. Bonanno, G., & Giudice, R. L. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10, 639–645.CrossRefGoogle Scholar
  20. Burke, D. J., Weisa, J. S., & Weis, P. (2000). Release of metals by the leaves of the salt marsh grasses Spartina alterniflora and Phragmites australis. Estuarine, Coastal and Shelf Science, 51, 153–159.CrossRefGoogle Scholar
  21. Çakırlar, H., Çiçek, N., Fedina, I., Georgieva, K., Doğru, A., & Velitchkova, M. (2008). NaCl induced cross- acclimation to UV-B radiation in four Barley (Hordeum vulgare L.) cultivars. Acta Physiologiae Plantarum, 30, 561–567.CrossRefGoogle Scholar
  22. Carmen, A., Pedro, C. A., Santos, M. S. S., Ferreira, S. M. F., & Gonçalves, S. C. (2013). The influence of cadmium contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima. Marine Environmental Research, 92, 197–205.CrossRefGoogle Scholar
  23. Chakraborty, S., Zaman, S., Fazli, P., & Mitra, A. (2014). Bioaccumulation pattern of heavy metals in three mangrove species of Avicennia inhabiting lower Gangetic delta. Journal of Chemical, Biological and Physical Sciences D: Environmental Sciences, 4(4), 3884–3896.Google Scholar
  24. Cieśla, W., & Dąbkowska-Naskręt, H. (1984). Właściwości zasolonych gleb w sąsiedztwie Janikowskich Zakładów Sodowych na Kujawach. Roczn. Glebozn., 35, 139–150.Google Scholar
  25. Cieśla, W., Dąbkowska-Naskręt, H., & Siuda, W. (1981). Stan zasolenia gleb w okolicach Inowrocławskich Zakładów Sodowych w Mątwach. Roczn. Glebozn., 32, 103–113.Google Scholar
  26. Cosio, C., Flück, R., Regier, N., & Slaveykova, V. I. (2014). Effects of macrophytes on the fate of mercury in aquatic systems. Environmental Toxicology and Chemistry, 33(6), 1225–1237.CrossRefGoogle Scholar
  27. Czerwiński, Z. (1996). Zasolenie wód i gleb na terenie Kujaw. Roczn. Glebozn., 47, 131–143.Google Scholar
  28. Dąbrowska-Prot, E. (1996). Bioindykacyjne znaczenie Diptera do oceny stanu ekosystemów leśnych. Sylwan, 2, 63–70.Google Scholar
  29. de Souza, E. R., dos Santos Freire, M. B. G., da Cunha, K. P. V., do Nascimento, C. W. A., Ruia, H. R., & Teixeira Lins, C. M. (2012). Biomass, anatomical changes and osmotic potential in Atriplex nummularia Lindl. cultivated in sodic saline under water stress. Environmental and Experimental Botany, 82, 20–27.CrossRefGoogle Scholar
  30. Demirezen, D., & Aksoy, A. (2006). Common hydrophytes as bioindicators of iron and manganese pollutions. Ecological Indicators, 6, 388–393.CrossRefGoogle Scholar
  31. Dendooven, L., Alcantara-Hernandez, R. J., Valenzuela-Encinas, C., Luna-Guido, M., Perez-Guevara, F., & Marsch, R. (2010). Dynamics of carbon and nitrogen in an extreme alkaline saline soil: A review. Soil Biology and Biochemistry, 42, 865–877.CrossRefGoogle Scholar
  32. Duarte, B., Santos, D., & Cacador, I. (2013). Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal 303 contamination search for an efficient biomarker. Functional Plant Biology, 40, 922–930.Google Scholar
  33. Eens, M., Pinxten, R., Verheyen, R. F., Blust, R., & Bervoets, L. (1999). Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicology and Environmental Safety, 44, 81–85.CrossRefGoogle Scholar
  34. Elkahoui, S., Hernandez, J. A., Abdelly, Ch., Ghrir, R., & Limam, F. (2005). Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Science, 168, 607–613.CrossRefGoogle Scholar
  35. Feitosa de Lacerda, C., Cambraia, J., Oliva, M. A., Ruiz, H. A., & Prisco, J. T. (2003). Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 49, 107–120.CrossRefGoogle Scholar
  36. Fergusson, J. E. (1990). The heavy elements: Chemistry, environmental impact and health effects. Oxford: Pergamon Press.Google Scholar
  37. Florea, A. M., & Büsselberg, D. (2006). Occurrence, use and potential toxic effects of metals and metal compounds. BioMetals, 19, 419–427.CrossRefGoogle Scholar
  38. Freude, H., Harde, K. W., & Lohse, G. A. (1966). Die Käfer Mitteleuropas. Band 9. Cerambycidae. Chrysomelidae. Goecke & Evers: Krefeld.Google Scholar
  39. Freude, H., Harde, K. W., & Lohse, G. A. (1967). Die Käfer Mitteleuropas. Band 7. Clavicornia. Goecke & Evers: Krefeld.Google Scholar
  40. Freude, H., Harde, K. W., & Lohse, G. A. (1969). Die Käfer Mitteleuropas. Band 8. Teredilia. Heteromera. Lamellicornia. Goecke & Evers: Krefeld.Google Scholar
  41. Freude, H., Harde, K. W., & Lohse, G. A. (1971). Die Käfer Mitteleuropas. Band 3. Adephaga 2. Palpicornia. Histeroidea. Staphylinoidea 1. Goecke & Evers: Krefeld.Google Scholar
  42. Freude, H., Harde, K. W., & Lohse, G. A. (1979). Die Käfer Mitteleuropas. Band 6. Diversicornia. Goecke & Evers: Krefeld.Google Scholar
  43. Freude, H., Harde, K. W., & Lohse, G. A. (1983). Die Käfer Mitteleuropas. Band 11. Rhynchophora II (Curculionidae II) Familienreihe: Rhynchophora. Goecke & Evers: Krefeld.Google Scholar
  44. Freude, H., Harde, K. W., Lohse, G. A., & Klausnitzer, B. (2004). Die Käfer Mitteleuropas. Band 2. Adephaga 1, Carabidae (Laufkäfer). Spektrum Akademischer Verlag ist ein Imprint der Elsevier GmbH: München.Google Scholar
  45. Fritioff, A., Kautsky, L., & Greger, M. (2005). Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution, 133, 265–274.CrossRefGoogle Scholar
  46. Gambrell, R. P. (1994). Trace and toxic metals in wet-lands: A review. Journal of Environmental Quality, 23, 883–891.CrossRefGoogle Scholar
  47. Ghosh, M., & Singh, S. P. (2005). A comparative study of cadmium phytoremediation by accumulator and weed species. Environmental Pollution, 133, 365–371.CrossRefGoogle Scholar
  48. Górny, M., & Grüm, L. (Eds.). (1993). Methods in soil zoology. Amsterdam: Elsevier.Google Scholar
  49. Hapke, H. J. (1991). Metal accumulation in the food chain and load of feed and food. In E. Merian (Ed.), Metals and their compounds in the environment (pp. 469–479). Weinheim, New York, Basel, Cambridge: VCH.Google Scholar
  50. Henriques, F. S., & Fernandes, J. C. (1991). Metal uptake and distribution in rush (Juncus conglomeratus L.) plants growing in pyrites mine tailings at Lousal, Portugal. Science of the Total Environment, 102, 253–260.CrossRefGoogle Scholar
  51. Hopkin, S. P. (1989). Ecophysiology of metals in terrestrial invertebrates. London, New York: Elsevier Appl. Sci. Pub. Ltd.Google Scholar
  52. Hu, J. Z., Zheng, A. Z., Pei, D. L., & Shi, G. X. (2010). Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants. Brazilian Archives of Biology and Technology, 53(1), 235–240.CrossRefGoogle Scholar
  53. Imlay, J. A. (2003). Pathways of oxidative damage. Annual Review of Microbiology, 57, 395–418.CrossRefGoogle Scholar
  54. Ip, C. C. M., Li, X. D., Zhang, G., Wai, O. W. H., & Li, Y. S. (2006). Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147, 311–323.CrossRefGoogle Scholar
  55. Jain, M., Mathur, G., Koul, S., & Sarin, N. B. (2001). Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Reports, 20, 463–468.CrossRefGoogle Scholar
  56. Jurkiewicz-Karnowska, E. (1998). Reakcja mięczaków na zanieczyszczenie środowisk wodnych metalami ciężkimi i możliwości ich wykorzystania w bioindykacji. Wiadomości Entomologiczne, 3, 219–234.Google Scholar
  57. Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.CrossRefGoogle Scholar
  58. Kabata-Pendias, A., & Pendias, H. (2010). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press.CrossRefGoogle Scholar
  59. Kabata-Pendias, A., & Szteke, B. (2012). Pierwiastki śladowe w geo- i biosferze. Puławy: Wyd. Nauk, IUNG-PIB.Google Scholar
  60. Kastratović, V., Krivokapić, S., Durović, D., & Blagojević, N. (2013). Seasonal changes in metal accumulation and distribution in the organs of Phragmites australis (common reed) from Lake Skadar, Montenegro. Journal of the Serbian Chemical Society, 78(8), 1241–1258.CrossRefGoogle Scholar
  61. Kidd, P. S., Dominguez-Rodriguez, M. J., Diez, J., & Monterroso, C. (2007). Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere, 66, 1458–1467.CrossRefGoogle Scholar
  62. Koim-Puchowska B. (2014). Kondycja roślin w warunkach stresu środowiskowego. The condition of plants under environmental stress. PhD Thesis, Univ. of Zielona Góra, Zielona Góra.Google Scholar
  63. Koyro, H. W., Khan, M. A., & Lieth, H. (2011). Halophytic crops: a resource for the future to reduce the water crisis? Emirates Journal of Food and Agriculture, 23(1), 1–16.CrossRefGoogle Scholar
  64. Krzyżaniak-Sitarz, M. (2011). Wpływ tężni na wartości średnioroczne stężenia kationów w kompleksie sorpcyjnym i roztworze glebowym czarnych ziem w Inowrocławiu. Proceedings of ECOpole, 1(5), 263–267.Google Scholar
  65. Kuo, S., Jellum, E. J., & Baker, A. S. (1985). Effects of soil type, liming and sludge application on zinc and cadmium availability to Swiss chard. Soil Science, 139, 122–130.CrossRefGoogle Scholar
  66. Lefe`vre, I., Corre´ al, E., & Lutts, S. (2005). Cadmium tolerance and accumulation in the noxious weed Zygophyllum fabago. Canadian Journal of Botany, 83, 1655–1662.CrossRefGoogle Scholar
  67. Lis J. A. (2000). Pluskwiaki różnoskrzydłe—Heteroptera. Część XVIII. Zesz. 14. Tarczówkowate—Pentatomidae. Klucze do oznaczania owadów Polski. Toruń, Pol. Tow. Entomol.Google Scholar
  68. Ma, W. C. (1982). The influence of soil properties and worm-related factors on the concentrations of heavy metals in earthworms. Pedobiology, 24, 109–119.Google Scholar
  69. Ma, W. C., Edelman, T., Beersum, I., & Jans, T. (1983). Uptake of Cd, Zn, Pb and Cu by earthworms near a zinc-smelting complex: Influence of soil pH and organic matter. Bulletin of Environment Contamination and Toxicology, 30, 424–427.CrossRefGoogle Scholar
  70. Maggio, A., Barbieri, G., Raimondi, G., & De Pascale, S. (2010). Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. Journal of Plant Growth Regulation, 29, 63–72.CrossRefGoogle Scholar
  71. Manahan, S. E. (2006). Toksykologia Środowiska. Aspekty chemiczne i biochemiczne. Warszawa: Wyd. Nauk. PWN.Google Scholar
  72. Mane, A. V., Deshpande, T. V., Wagh, V. B., Karadge, B. A., & Samant, J. S. (2011). A critical review on physiological changes associated with reference to salinity. International Journal of Environmental Sciences, 1(6), 1192–1216.Google Scholar
  73. Martin, M. H., & Coughtrey, P. J. (1982). Biological monitoring of heavy metal pollution: Land and air (p. 475). London, New York: Appl. Sci. Pub.CrossRefGoogle Scholar
  74. McBride, M. B. (2005). Molybdenum and copper uptake by forage grasses and legumes grown on a metal-contaminated sludge site. Communications in Soil Science and Plant Analysis, 36, 2489–2501.CrossRefGoogle Scholar
  75. McLean J. E., & Bledsoe B. E. (1992). Behavior of metals in soils. In Kerr R. S. (Ed.), Environmental Research Laboratory, Ada, Oklahoma, Superfund Technology Support Center for Ground Water, US Environ. Protection Agency, Office of Solid Waste and Emergency, Response Office of Res. and Development, EPA/540/S-92/018.Google Scholar
  76. Merian, E. (Ed.). (1991). Metals and their compounds in the environment. Weinheim, New York, Basel, Cambridge: VCH.Google Scholar
  77. Merino, J. H., Dayna, Huval Ć., Andy, Ć., & Nyman, J. (2010). Implication of nutrient and salinity interaction on the productivity of Spartina patens. Wetlands Ecology and Management, 18, 111–117.CrossRefGoogle Scholar
  78. Möller, A., Müller, H. W., Abdullah, A., Abdelgawad, G., & Utermann, J. (2005). Urban soil pollution in Damascus, Syria: Concentrations and patterns of heavy metals in the soils of the Damascus Ghouta. Geoderma, 124, 63–71.CrossRefGoogle Scholar
  79. Notten, M. J. M., Oosthoek, A. J. P., Rozema, J., & Aerts, R. (2005). Heavy metal concentrations in a soil–plant–snail food chain along a terrestrial soil pollution gradient. Environmental Pollution, 138, 178–190.CrossRefGoogle Scholar
  80. O’Neill, P. (1998). Chemia środowiska. Warszawa: Wyd. Nauk. PWN.Google Scholar
  81. OSPAR Commission 2002 (2004 update). OSPAR Background Document on Cadmium.Google Scholar
  82. Pastor, J., & Hernandez, A. J. (2012). Heavy metals, salts organic residues in old solid urban waste landfills and surface waters in their discharge areas: Determinants for restoring their impact. Journal of Environmental Management, 98, S42–S49.CrossRefGoogle Scholar
  83. Paton, G. I., Killham, K., Weitz, H. J., & Semple, K. T. (2005). Biological tools for the assessment of contaminated land: Applied soil ecotoxicology. Soil Use and Management, 21, 487–499.CrossRefGoogle Scholar
  84. Pawłowicz, I. (2004). Fizjologiczna i molekularna odpowiedź rośliny na stres dehydratacyjny. Post. Biol. Kom., 31, 191–209.CrossRefGoogle Scholar
  85. Piernik, A. (2003). Inland halophilous vegetation as indicator of soil salinity. Basic and Applied Ecology, 4, 525–536.CrossRefGoogle Scholar
  86. Piernik, A. (2006). Growth of the three meadow species along a salinity gradient in an inland saline habitat: Transplant experiment. Polish Journal of Ecology, 54(1), 117–126.Google Scholar
  87. Prasad, M. N. V., & Freitas, H. M. O. (2003). Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6(3), 285–321.CrossRefGoogle Scholar
  88. Prasad, M. N. V., Sajwan, K. S., & Naidu, R. (2006). Trace elements in the environment: Biogeochemistry, biotechnology, and bioremediation. Boca Raton, London, New York: Taylor & Francis Group, LLC, CRC.Google Scholar
  89. Prokop, Z., Vangheluwe, M. L., Van Sprang, P. A., Janssen, C. R., & Holoubek, I. (2003). Mobility and toxicity of metals in sandy sediments deposited on land. Ecotoxicology and Environmental Safety, 54, 65–73.CrossRefGoogle Scholar
  90. Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M. H., Koyro, H. W., Ranieri, A., et al. (2010). Phytodesalination of a salt affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology, 101, 6822–6828.CrossRefGoogle Scholar
  91. Radchenko A., Czechowska W., & Czechowski W. (2004). Mrówki—Formicidae. Klucze do oznaczania owadów Polski, cz. XXIV, z. 63, Toruń.Google Scholar
  92. Rajendran, N., Suwa, Y., & Urushigawa, Y. (1993). Distribution of phosphor-lipid ester-linked fatty acid biomarkers for bacteria in the sediment of Ise Bay, Japan. Marine Chemistry, 42, 39–56.CrossRefGoogle Scholar
  93. Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39, 2661–2664.CrossRefGoogle Scholar
  94. Reboreda, R., & Cacador, I. (2007). Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environmental Pollution, 146, 147–154.CrossRefGoogle Scholar
  95. Richards, B. N. (1979). Introduction to soil ecology. Warsaw: PWN-Pol. Sci. Publ.Google Scholar
  96. Rutkowski, L. (2011). Klucz do oznaczania roślin naczyniowych Polski niżowej. Warszawa: Wyd. Nauk. PWN-Pol. Sci. Publ.Google Scholar
  97. Rytelewski, J., Niklewska, A., & Przedwojski, R. (1993). Przyczyny powstawania gleb zasolonych na Kujawach. Acta Acad. Agr. Ac Techn. Olstenensis, Agricultura, 56, 111–119.Google Scholar
  98. Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Science of the Total Environment, 28, 87–98.CrossRefGoogle Scholar
  99. Sanders, J. R., & Adams, T. M. (1987). The effects of pH and soil type on concentrations of zinc, copper and nickel extracted by calcium chloride from sewage sludge-treated soils. Environmental Pollution A, 43, 219–228.CrossRefGoogle Scholar
  100. Sawicka-Kapusta, K. (1990a). Plant reaction to sulfur dioxide and heavy metals pollution in the environment: Bioindication. Wiad. Ekol., 36, 95–109.Google Scholar
  101. Sawicka-Kapusta, K. (1990b). Assessment of the environmental pollution around a steelworks with use of indicator plants. Arch. Ochr. Środ., 1–2, 79–99.Google Scholar
  102. Sawicka-Kapusta, K., Świergosz, R., Zając, K. P., & Koczańska, W. (1990). Evaluation of the pollution of the Olkusz region on the basis of research on the vegetation of agricultural land. Zesz. Nauk. AGH, 1368, 183–199.Google Scholar
  103. Schauff, M. E. (2001). Collecting and preserving insects and mites: Techniques and tools (Vol. 20560, pp. 1–68). Systematic Entomology Laboratory, USDA, National Museum of Natural History, NHB 168, Washington, DC.Google Scholar
  104. Shi, D., & Sheng, Y. (2005). Effect of various salt–alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environmental and Experimental Botany, 54, 8–21.CrossRefGoogle Scholar
  105. Siddique, M. A. M., & Aktar, M. (2012). Heavy metals in salt marsh sediments of porteresia bed along the Karnafully river coast, Chittagong. Soil and Water Research, 7(3), 117–123.Google Scholar
  106. Silvestri, S., Defina, A., & Marani, M. (2005). Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science., 62, 119–130.CrossRefGoogle Scholar
  107. Southwood, T. R. E., & Henderson, P. A. (2000). Ecological methods (3rd ed.). New Jersey: Blackwell Science.Google Scholar
  108. Stolz, J. F., & Oremland, R. S. (1999). Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews, 23, 615–627.CrossRefGoogle Scholar
  109. Sundareshwar, P. V., Morris, J. T., Koepfler, E. K., & Fornwalt, B. (2003). Phosphorous limitation of coastal ecosystem processes. Science, 299, 563–565.CrossRefGoogle Scholar
  110. Szafer, W., Kulczyński, S., & Pawłowski, B. (1986). Polish plants. PWN-Pol. Sci. Publ., Warszawa, v.1, 2.Google Scholar
  111. Szczepaniak, W. (1996). Instrumental methods in chemical analysis. Warszawa: WNT.Google Scholar
  112. Teal, J. M., & Howes, B. L. (2000). Salt marsh values; retrospection from the end of the century. In M. P. Weinstain & D. A. Kreeger (Eds.), Concepts and controversies in tidal marsh ecology (pp. 3–7). Dordrecht: Kluwer Acad. Publ.Google Scholar
  113. Teuchies, J. (2012). The biogeochemical cycle of metals in natural freshwater tidal marshes and in flood control areas. Ph.D. Thesis, Universiteit Antwerpen, Faculteit Wetenschappen, Departement Biologie, ISBN: 9789057284021, Depot Nr: D/2012/12.293/41.Google Scholar
  114. Tretyakova, I. N., & Noskova, N. E. (2004). Scotch pine pollen under conditions of environmental stress. Russian Journal of Ecology, 35(1), 20–33.CrossRefGoogle Scholar
  115. Ulgenturk, S., & Toros, S. (1993). Effects of environmental pollution on insects. J. Turk. Entomol. Dergisi, 17(1), 55–64.Google Scholar
  116. USA Environmental Protection Agency (USA EPA). (2001). 2001 update of Ambient Water Quality Criteria for Cadmium. EPA-822-R-01-001.Google Scholar
  117. Weis, J. S., & Weis, P. (2003). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30, 685–700.CrossRefGoogle Scholar
  118. Weltz, B. (1985). Atomic absorption spectrometry. Berlin: VCH Veincheim.Google Scholar
  119. Więckowska, J. (1997). Differential thermal analysis and thermogravimetry: The edition of Wrocław Techn. Wrocław: High University.Google Scholar
  120. Wiktor, A. (2004). Ślimaki lądowe Polski. Gastropoda. Mantis, Olsztyn.Google Scholar
  121. Williams, T. P., Bubb, J. M., & Lester, J. N. (1994). Metal accumulation within salt marsh environments: A review. Marine Pollution Bulletin, 38, 277–290.CrossRefGoogle Scholar
  122. Wolf, K., Van den Brink, W. J., & Colon F. J. (Eds.). (1988). Contaminated soil. Kluwer Acad. Pub: Dordrecht, Boston, London, v.1, 2.Google Scholar
  123. Woźny, A., & Przybył, K. (2007). Komórki roslinne w warunkach stresu. T. I, II. Cz. I, II. Wyd. Nauk. UAM, Poznań.Google Scholar
  124. Wu, C., Chen, X., & Tang, J. (2005). Lead accumulation in weed communities with various species. Communications in Soil Science and Plant Analysis, 36, 1891–1902.CrossRefGoogle Scholar
  125. Ye, Z. H., Cheung, K. C., & Wong, M. H. (2001). Copper uptake in Typha latifolia as affected by iron and manganese plaque on the root surface. Canadian Journal of Botany, 79, 314–320.CrossRefGoogle Scholar
  126. Zar, J. H. (1998). Biostatistical analysis (4th ed.). Englewood Cliffs, NJ: Prentice-Hall Inc.Google Scholar
  127. Zhu, X., Jing, Y., Chen, G., Wang, S., & Zhang, C. (2003). Solute levels and osmoregulatory enzyme activities in reed plants adapted to drought and saline habitats. Plant Growth Regulation, 41, 165–172.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Piotr Kamiński
    • 1
    • 2
  • Tadeusz Barczak
    • 3
  • Janina Bennewicz
    • 3
  • Leszek Jerzak
    • 4
  • Maria Bogdzińska
    • 5
  • Oleg Aleksandrowicz
    • 6
  • Beata Koim-Puchowska
    • 1
  • Małgorzata Szady-Grad
    • 7
  • Jacek J. Klawe
    • 7
  • Alina Woźniak
    • 8
  1. 1.Department of Ecology and Environmental Protection, Collegium Medicum in BydgoszczNicolaus Copernicus University in ToruńBydgoszczPoland
  2. 2.Department of Biotechnology, Faculty of Biological SciencesUniversity of Zielona GóraZielona GoraPoland
  3. 3.Department of ZoologyUniversity of Technology and Life Sciences BydgoszczBydgoszczPoland
  4. 4.Department of Nature Protection, Faculty of Biological SciencesUniversity of Zielona GóraZielona GoraPoland
  5. 5.Department of Genetics and Animal BreedingUniversity of Technology and Life SciencesBydgoszczPoland
  6. 6.Institute of Biology and Environment Protection, Department of ZoologyPomeranian UniversitySłupskPoland
  7. 7.Department of Hygiene and Epidemiology, Collegium Medicum in BydgoszczNicolaus Copernicus University in ToruńBydgoszczPoland
  8. 8.Department of Medical Biology, Collegium Medicum in BydgoszczNicolaus Copernicus University in ToruńBydgoszczPoland

Personalised recommendations