Skip to main content

Advertisement

Log in

Effects of chemical elements in the trophic levels of natural salt marshes

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The relationships between the bioaccumulation of Na, K, Ca, Mg, Fe, Zn, Cu, Mn, Co, Cd, and Pb, acidity (pH), salinity (Ec), and organic matter content within trophic levels (water–soil–plants–invertebrates) were studied in saline environments in Poland. Environments included sodium manufactures, wastes utilization areas, dumping grounds, and agriculture cultivation, where disturbed Ca, Mg, and Fe exist and the impact of Cd and Pb is high. We found Zn, Cu, Mn, Co, and Cd accumulation in the leaves of plants and in invertebrates. Our aim was to determine the selectivity exhibited by soil for nutrients and heavy metals and to estimate whether it is important in elucidating how these metals are available for plant/animal uptake in addition to their mobility and stability within soils. We examined four ecological plant groups: trees, shrubs, minor green plants, and water macrophytes. Among invertebrates, we sampled breastplates Malacostraca, small arachnids Arachnida, diplopods Diplopoda, small insects Insecta, and snails Gastropoda. A higher level of chemical elements was found in saline polluted areas (sodium manufactures and anthropogenic sites). Soil acidity and salinity determined the bioaccumulation of free radicals in the trophic levels measured. A pH decrease caused Zn and Cd to increase in sodium manufactures and an increase in Ca, Zn, Cu, Cd, and Pb in the anthropogenic sites. pH increase also caused Na, Mg, and Fe to increase in sodium manufactures and an increase in Na, Fe, Mn, and Co in the anthropogenic sites. There was a significant correlation between these chemical elements and Ec in soils. We found significant relationships between pH and Ec, which were positive in saline areas of sodium manufactures and negative in the anthropogenic and control sites. These dependencies testify that the measurement of the selectivity of cations and their fluctuation in soils provide essential information on the affinity and binding strength in these environments. The chemical elements accumulated in soils and plants; however, further flow is selective and variable. The selectivity exhibited by soil systems for nutrients and heavy metals is important in elucidating how these metals become available for plant/animal uptake and also their mobility and stability in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, B. M., Banks, H. T., Banks, J. E., & Stark, J. D. (2005). Population dynamics models in plant–insect herbivore–pesticide interactions. Mathematical Biosciences, 196(1), 39–64.

    Article  CAS  Google Scholar 

  • Aghaleh, M., Niknam, V., Ebrahimzadeh, H., & Razavi, K. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and S. europaea. Biologia Plantarum, 53(2), 243–248.

    Article  CAS  Google Scholar 

  • Ajmal Khan, M., Ungar, I. A., & Showalter, A. M. (2002). Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriplex griffithii var. stocksii. Annals of Botany, 85, 225–232.

    Article  CAS  Google Scholar 

  • Alloway, B. J., Jackson, A. P., & Morgan, H. (1990). The accumulation of cadmium by vegetables grown on soils contaminated from a variety of sources. Science of the Total Environment, 91, 223–236.

    Article  CAS  Google Scholar 

  • Andrews, S. M., Johnson, M. S., & Cooke, J. A. (1989a). Distribution of trace element pollutants in a contaminated grassland ecosystem established on metalliferous fluorspar tailings—1: Lead. Environmental Pollution, 58, 73–85.

    Article  CAS  Google Scholar 

  • Andrews, S. M., Johnson, M. S., & Cooke, J. A. (1989b). Distribution of trace element pollutants in a contaminated grassland ecosystem established on metalliferous fluorspar tailings—2: Zinc. Environmental Pollution, 59, 241–252.

    Article  CAS  Google Scholar 

  • Appel, C., Ma, L. Q., Rhue, R. D., & Reve, W. (2003). Selectivities of potassium–calcium and potassium–lead exchange in two tropical soils. Soil Science Society of America Journal, 67, 1707–1714.

    Article  CAS  Google Scholar 

  • Askaril, H., Edqvist, J., Hajheidaril, M., Kafi, M., & Salekdeh, G. H. (2006). Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics, 6, 2542–2554.

    Article  CAS  Google Scholar 

  • Ayeni, O. O., Ndakidemi, P. A., Snyman, R. G., & Odendaal, J. P. (2010). Chemical, biological and physiological indicators of metal pollution in wetlands. Scientific Research and Essays, 5(15), 1938–1949.

    Google Scholar 

  • Ayyappan, D., Balakrishnan, V., & Ravindran, K. C. (2013). Potentiality of salt marsh halophyte on restoration of saline agricultural soil. World Applied Sciences Journal, 28(12), 2026–2032.

    Google Scholar 

  • Ayyappan, D., Balakrishnan, V., & Ravindran, K. C. (2014). Phytoextraction of heavy metals and ions from tannery effluent using Suaeda monoica Forsk. with reference to morphology and anatomical characters. International Journal of Current Research and Review, 2(9), 292–304.

    Google Scholar 

  • Banus, M. D., Valiela, I., & Teal, J. M. (1975). Pb, Zn, and Cd budgets in experimentally enriched salt marsh ecosystems. Estuarine Coastal Marine Sci., 3, 421–430.

    Article  CAS  Google Scholar 

  • Bargagli, R. (1998). Trace elements in terrestrial plants: An ecophysiological approach to biomonitoring and biorecovery. Berlin: Springer.

    Google Scholar 

  • Barnabas, A. D., Przybyłowicz, W. J., Mesjasz-Przybyłowicz, J., & Pineda, C. A. (1999). Nuclear microprobe studies of elemental distribution in the seagrass Thalassodendron ciliatum. Nuclear Instruments and Methods in Physics Research B, 158, 323–328.

    Article  CAS  Google Scholar 

  • Barrett-Lennard, E. G. (2002). Restoration of saline land through revegetation. Agricultural Water Management, 53, 213–226.

    Article  Google Scholar 

  • Batzer, D. P. (2013). The seemingly intractable ecological responses of invertebrates in North American wetlands: A review. Wetlands, 33, 1–15.

    Article  Google Scholar 

  • Bezel, V. S., Pozolotina, V. N., Bel’skii, E. A., & Zhuikova, T. V. (2001). Variation in population parameters: Adaptation to toxic environmental factors. Russian Journal of Ecology, 32(6), 413–419.

    Article  Google Scholar 

  • Bonanno, G. (2011). Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicology and Environmental Safety, 74, 1057–1064.

    Article  CAS  Google Scholar 

  • Bonanno, G., & Giudice, R. L. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common reed) and their potential use as contamination indicators. Ecological Indicators, 10, 639–645.

    Article  CAS  Google Scholar 

  • Burke, D. J., Weisa, J. S., & Weis, P. (2000). Release of metals by the leaves of the salt marsh grasses Spartina alterniflora and Phragmites australis. Estuarine, Coastal and Shelf Science, 51, 153–159.

    Article  CAS  Google Scholar 

  • Çakırlar, H., Çiçek, N., Fedina, I., Georgieva, K., Doğru, A., & Velitchkova, M. (2008). NaCl induced cross- acclimation to UV-B radiation in four Barley (Hordeum vulgare L.) cultivars. Acta Physiologiae Plantarum, 30, 561–567.

    Article  CAS  Google Scholar 

  • Carmen, A., Pedro, C. A., Santos, M. S. S., Ferreira, S. M. F., & Gonçalves, S. C. (2013). The influence of cadmium contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima. Marine Environmental Research, 92, 197–205.

    Article  CAS  Google Scholar 

  • Chakraborty, S., Zaman, S., Fazli, P., & Mitra, A. (2014). Bioaccumulation pattern of heavy metals in three mangrove species of Avicennia inhabiting lower Gangetic delta. Journal of Chemical, Biological and Physical Sciences D: Environmental Sciences, 4(4), 3884–3896.

    Google Scholar 

  • Cieśla, W., & Dąbkowska-Naskręt, H. (1984). Właściwości zasolonych gleb w sąsiedztwie Janikowskich Zakładów Sodowych na Kujawach. Roczn. Glebozn., 35, 139–150.

    Google Scholar 

  • Cieśla, W., Dąbkowska-Naskręt, H., & Siuda, W. (1981). Stan zasolenia gleb w okolicach Inowrocławskich Zakładów Sodowych w Mątwach. Roczn. Glebozn., 32, 103–113.

    Google Scholar 

  • Cosio, C., Flück, R., Regier, N., & Slaveykova, V. I. (2014). Effects of macrophytes on the fate of mercury in aquatic systems. Environmental Toxicology and Chemistry, 33(6), 1225–1237.

    Article  CAS  Google Scholar 

  • Czerwiński, Z. (1996). Zasolenie wód i gleb na terenie Kujaw. Roczn. Glebozn., 47, 131–143.

    Google Scholar 

  • Dąbrowska-Prot, E. (1996). Bioindykacyjne znaczenie Diptera do oceny stanu ekosystemów leśnych. Sylwan, 2, 63–70.

    Google Scholar 

  • de Souza, E. R., dos Santos Freire, M. B. G., da Cunha, K. P. V., do Nascimento, C. W. A., Ruia, H. R., & Teixeira Lins, C. M. (2012). Biomass, anatomical changes and osmotic potential in Atriplex nummularia Lindl. cultivated in sodic saline under water stress. Environmental and Experimental Botany, 82, 20–27.

    Article  CAS  Google Scholar 

  • Demirezen, D., & Aksoy, A. (2006). Common hydrophytes as bioindicators of iron and manganese pollutions. Ecological Indicators, 6, 388–393.

    Article  CAS  Google Scholar 

  • Dendooven, L., Alcantara-Hernandez, R. J., Valenzuela-Encinas, C., Luna-Guido, M., Perez-Guevara, F., & Marsch, R. (2010). Dynamics of carbon and nitrogen in an extreme alkaline saline soil: A review. Soil Biology and Biochemistry, 42, 865–877.

    Article  CAS  Google Scholar 

  • Duarte, B., Santos, D., & Cacador, I. (2013). Halophyte anti-oxidant feedback seasonality in two salt marshes with different degrees of metal 303 contamination search for an efficient biomarker. Functional Plant Biology, 40, 922–930.

    CAS  Google Scholar 

  • Eens, M., Pinxten, R., Verheyen, R. F., Blust, R., & Bervoets, L. (1999). Great and blue tits as indicators of heavy metal contamination in terrestrial ecosystems. Ecotoxicology and Environmental Safety, 44, 81–85.

    Article  CAS  Google Scholar 

  • Elkahoui, S., Hernandez, J. A., Abdelly, Ch., Ghrir, R., & Limam, F. (2005). Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells. Plant Science, 168, 607–613.

    Article  CAS  Google Scholar 

  • Feitosa de Lacerda, C., Cambraia, J., Oliva, M. A., Ruiz, H. A., & Prisco, J. T. (2003). Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany, 49, 107–120.

    Article  CAS  Google Scholar 

  • Fergusson, J. E. (1990). The heavy elements: Chemistry, environmental impact and health effects. Oxford: Pergamon Press.

    Google Scholar 

  • Florea, A. M., & Büsselberg, D. (2006). Occurrence, use and potential toxic effects of metals and metal compounds. BioMetals, 19, 419–427.

    Article  CAS  Google Scholar 

  • Freude, H., Harde, K. W., & Lohse, G. A. (1966). Die Käfer Mitteleuropas. Band 9. Cerambycidae. Chrysomelidae. Goecke & Evers: Krefeld.

  • Freude, H., Harde, K. W., & Lohse, G. A. (1967). Die Käfer Mitteleuropas. Band 7. Clavicornia. Goecke & Evers: Krefeld.

  • Freude, H., Harde, K. W., & Lohse, G. A. (1969). Die Käfer Mitteleuropas. Band 8. Teredilia. Heteromera. Lamellicornia. Goecke & Evers: Krefeld.

  • Freude, H., Harde, K. W., & Lohse, G. A. (1971). Die Käfer Mitteleuropas. Band 3. Adephaga 2. Palpicornia. Histeroidea. Staphylinoidea 1. Goecke & Evers: Krefeld.

  • Freude, H., Harde, K. W., & Lohse, G. A. (1979). Die Käfer Mitteleuropas. Band 6. Diversicornia. Goecke & Evers: Krefeld.

  • Freude, H., Harde, K. W., & Lohse, G. A. (1983). Die Käfer Mitteleuropas. Band 11. Rhynchophora II (Curculionidae II) Familienreihe: Rhynchophora. Goecke & Evers: Krefeld.

  • Freude, H., Harde, K. W., Lohse, G. A., & Klausnitzer, B. (2004). Die Käfer Mitteleuropas. Band 2. Adephaga 1, Carabidae (Laufkäfer). Spektrum Akademischer Verlag ist ein Imprint der Elsevier GmbH: München.

  • Fritioff, A., Kautsky, L., & Greger, M. (2005). Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution, 133, 265–274.

    Article  CAS  Google Scholar 

  • Gambrell, R. P. (1994). Trace and toxic metals in wet-lands: A review. Journal of Environmental Quality, 23, 883–891.

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A comparative study of cadmium phytoremediation by accumulator and weed species. Environmental Pollution, 133, 365–371.

    Article  CAS  Google Scholar 

  • Górny, M., & Grüm, L. (Eds.). (1993). Methods in soil zoology. Amsterdam: Elsevier.

    Google Scholar 

  • Hapke, H. J. (1991). Metal accumulation in the food chain and load of feed and food. In E. Merian (Ed.), Metals and their compounds in the environment (pp. 469–479). Weinheim, New York, Basel, Cambridge: VCH.

    Google Scholar 

  • Henriques, F. S., & Fernandes, J. C. (1991). Metal uptake and distribution in rush (Juncus conglomeratus L.) plants growing in pyrites mine tailings at Lousal, Portugal. Science of the Total Environment, 102, 253–260.

    Article  CAS  Google Scholar 

  • Hopkin, S. P. (1989). Ecophysiology of metals in terrestrial invertebrates. London, New York: Elsevier Appl. Sci. Pub. Ltd.

    Google Scholar 

  • Hu, J. Z., Zheng, A. Z., Pei, D. L., & Shi, G. X. (2010). Bioaccumulation and chemical forms of cadmium, copper and lead in aquatic plants. Brazilian Archives of Biology and Technology, 53(1), 235–240.

    Article  CAS  Google Scholar 

  • Imlay, J. A. (2003). Pathways of oxidative damage. Annual Review of Microbiology, 57, 395–418.

    Article  CAS  Google Scholar 

  • Ip, C. C. M., Li, X. D., Zhang, G., Wai, O. W. H., & Li, Y. S. (2006). Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal area, South China. Environmental Pollution, 147, 311–323.

    Article  CAS  Google Scholar 

  • Jain, M., Mathur, G., Koul, S., & Sarin, N. B. (2001). Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L.). Plant Cell Reports, 20, 463–468.

    Article  CAS  Google Scholar 

  • Jurkiewicz-Karnowska, E. (1998). Reakcja mięczaków na zanieczyszczenie środowisk wodnych metalami ciężkimi i możliwości ich wykorzystania w bioindykacji. Wiadomości Entomologiczne, 3, 219–234.

    Google Scholar 

  • Kabata-Pendias, A., & Mukherjee, A. B. (2007). Trace elements from soil to human. Berlin: Springer.

    Book  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2010). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press.

    Book  Google Scholar 

  • Kabata-Pendias, A., & Szteke, B. (2012). Pierwiastki śladowe w geo- i biosferze. Puławy: Wyd. Nauk, IUNG-PIB.

    Google Scholar 

  • Kastratović, V., Krivokapić, S., Durović, D., & Blagojević, N. (2013). Seasonal changes in metal accumulation and distribution in the organs of Phragmites australis (common reed) from Lake Skadar, Montenegro. Journal of the Serbian Chemical Society, 78(8), 1241–1258.

    Article  CAS  Google Scholar 

  • Kidd, P. S., Dominguez-Rodriguez, M. J., Diez, J., & Monterroso, C. (2007). Bioavailability and plant accumulation of heavy metals and phosphorus in agricultural soils amended by long-term application of sewage sludge. Chemosphere, 66, 1458–1467.

    Article  CAS  Google Scholar 

  • Koim-Puchowska B. (2014). Kondycja roślin w warunkach stresu środowiskowego. The condition of plants under environmental stress. PhD Thesis, Univ. of Zielona Góra, Zielona Góra.

  • Koyro, H. W., Khan, M. A., & Lieth, H. (2011). Halophytic crops: a resource for the future to reduce the water crisis? Emirates Journal of Food and Agriculture, 23(1), 1–16.

    Article  Google Scholar 

  • Krzyżaniak-Sitarz, M. (2011). Wpływ tężni na wartości średnioroczne stężenia kationów w kompleksie sorpcyjnym i roztworze glebowym czarnych ziem w Inowrocławiu. Proceedings of ECOpole, 1(5), 263–267.

    Google Scholar 

  • Kuo, S., Jellum, E. J., & Baker, A. S. (1985). Effects of soil type, liming and sludge application on zinc and cadmium availability to Swiss chard. Soil Science, 139, 122–130.

    Article  CAS  Google Scholar 

  • Lefe`vre, I., Corre´ al, E., & Lutts, S. (2005). Cadmium tolerance and accumulation in the noxious weed Zygophyllum fabago. Canadian Journal of Botany, 83, 1655–1662.

    Article  CAS  Google Scholar 

  • Lis J. A. (2000). Pluskwiaki różnoskrzydłe—Heteroptera. Część XVIII. Zesz. 14. Tarczówkowate—Pentatomidae. Klucze do oznaczania owadów Polski. Toruń, Pol. Tow. Entomol.

  • Ma, W. C. (1982). The influence of soil properties and worm-related factors on the concentrations of heavy metals in earthworms. Pedobiology, 24, 109–119.

    CAS  Google Scholar 

  • Ma, W. C., Edelman, T., Beersum, I., & Jans, T. (1983). Uptake of Cd, Zn, Pb and Cu by earthworms near a zinc-smelting complex: Influence of soil pH and organic matter. Bulletin of Environment Contamination and Toxicology, 30, 424–427.

    Article  CAS  Google Scholar 

  • Maggio, A., Barbieri, G., Raimondi, G., & De Pascale, S. (2010). Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. Journal of Plant Growth Regulation, 29, 63–72.

    Article  CAS  Google Scholar 

  • Manahan, S. E. (2006). Toksykologia Środowiska. Aspekty chemiczne i biochemiczne. Warszawa: Wyd. Nauk. PWN.

    Google Scholar 

  • Mane, A. V., Deshpande, T. V., Wagh, V. B., Karadge, B. A., & Samant, J. S. (2011). A critical review on physiological changes associated with reference to salinity. International Journal of Environmental Sciences, 1(6), 1192–1216.

    Google Scholar 

  • Martin, M. H., & Coughtrey, P. J. (1982). Biological monitoring of heavy metal pollution: Land and air (p. 475). London, New York: Appl. Sci. Pub.

    Book  Google Scholar 

  • McBride, M. B. (2005). Molybdenum and copper uptake by forage grasses and legumes grown on a metal-contaminated sludge site. Communications in Soil Science and Plant Analysis, 36, 2489–2501.

    Article  CAS  Google Scholar 

  • McLean J. E., & Bledsoe B. E. (1992). Behavior of metals in soils. In Kerr R. S. (Ed.), Environmental Research Laboratory, Ada, Oklahoma, Superfund Technology Support Center for Ground Water, US Environ. Protection Agency, Office of Solid Waste and Emergency, Response Office of Res. and Development, EPA/540/S-92/018.

  • Merian, E. (Ed.). (1991). Metals and their compounds in the environment. Weinheim, New York, Basel, Cambridge: VCH.

    Google Scholar 

  • Merino, J. H., Dayna, Huval Ć., Andy, Ć., & Nyman, J. (2010). Implication of nutrient and salinity interaction on the productivity of Spartina patens. Wetlands Ecology and Management, 18, 111–117.

    Article  Google Scholar 

  • Möller, A., Müller, H. W., Abdullah, A., Abdelgawad, G., & Utermann, J. (2005). Urban soil pollution in Damascus, Syria: Concentrations and patterns of heavy metals in the soils of the Damascus Ghouta. Geoderma, 124, 63–71.

    Article  CAS  Google Scholar 

  • Notten, M. J. M., Oosthoek, A. J. P., Rozema, J., & Aerts, R. (2005). Heavy metal concentrations in a soil–plant–snail food chain along a terrestrial soil pollution gradient. Environmental Pollution, 138, 178–190.

    Article  CAS  Google Scholar 

  • O’Neill, P. (1998). Chemia środowiska. Warszawa: Wyd. Nauk. PWN.

    Google Scholar 

  • OSPAR Commission 2002 (2004 update). OSPAR Background Document on Cadmium.

  • Pastor, J., & Hernandez, A. J. (2012). Heavy metals, salts organic residues in old solid urban waste landfills and surface waters in their discharge areas: Determinants for restoring their impact. Journal of Environmental Management, 98, S42–S49.

    Article  CAS  Google Scholar 

  • Paton, G. I., Killham, K., Weitz, H. J., & Semple, K. T. (2005). Biological tools for the assessment of contaminated land: Applied soil ecotoxicology. Soil Use and Management, 21, 487–499.

    Article  Google Scholar 

  • Pawłowicz, I. (2004). Fizjologiczna i molekularna odpowiedź rośliny na stres dehydratacyjny. Post. Biol. Kom., 31, 191–209.

    Article  Google Scholar 

  • Piernik, A. (2003). Inland halophilous vegetation as indicator of soil salinity. Basic and Applied Ecology, 4, 525–536.

    Article  Google Scholar 

  • Piernik, A. (2006). Growth of the three meadow species along a salinity gradient in an inland saline habitat: Transplant experiment. Polish Journal of Ecology, 54(1), 117–126.

    Google Scholar 

  • Prasad, M. N. V., & Freitas, H. M. O. (2003). Metal hyperaccumulation in plants: Biodiversity prospecting for phytoremediation technology. Electronic Journal of Biotechnology, 6(3), 285–321.

    Article  Google Scholar 

  • Prasad, M. N. V., Sajwan, K. S., & Naidu, R. (2006). Trace elements in the environment: Biogeochemistry, biotechnology, and bioremediation. Boca Raton, London, New York: Taylor & Francis Group, LLC, CRC.

    Google Scholar 

  • Prokop, Z., Vangheluwe, M. L., Van Sprang, P. A., Janssen, C. R., & Holoubek, I. (2003). Mobility and toxicity of metals in sandy sediments deposited on land. Ecotoxicology and Environmental Safety, 54, 65–73.

    Article  CAS  Google Scholar 

  • Rabhi, M., Ferchichi, S., Jouini, J., Hamrouni, M. H., Koyro, H. W., Ranieri, A., et al. (2010). Phytodesalination of a salt affected soil with the halophyte Sesuvium portulacastrum L. to arrange in advance the requirements for the successful growth of a glycophytic crop. Bioresource Technology, 101, 6822–6828.

    Article  CAS  Google Scholar 

  • Radchenko A., Czechowska W., & Czechowski W. (2004). Mrówki—Formicidae. Klucze do oznaczania owadów Polski, cz. XXIV, z. 63, Toruń.

  • Rajendran, N., Suwa, Y., & Urushigawa, Y. (1993). Distribution of phosphor-lipid ester-linked fatty acid biomarkers for bacteria in the sediment of Ise Bay, Japan. Marine Chemistry, 42, 39–56.

    Article  CAS  Google Scholar 

  • Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., & Balasubramanian, T. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39, 2661–2664.

    Article  CAS  Google Scholar 

  • Reboreda, R., & Cacador, I. (2007). Halophyte vegetation influences in salt marsh retention capacity for heavy metals. Environmental Pollution, 146, 147–154.

    Article  CAS  Google Scholar 

  • Richards, B. N. (1979). Introduction to soil ecology. Warsaw: PWN-Pol. Sci. Publ.

    Google Scholar 

  • Rutkowski, L. (2011). Klucz do oznaczania roślin naczyniowych Polski niżowej. Warszawa: Wyd. Nauk. PWN-Pol. Sci. Publ.

    Google Scholar 

  • Rytelewski, J., Niklewska, A., & Przedwojski, R. (1993). Przyczyny powstawania gleb zasolonych na Kujawach. Acta Acad. Agr. Ac Techn. Olstenensis, Agricultura, 56, 111–119.

    Google Scholar 

  • Samecka-Cymerman, A., & Kempers, A. J. (2001). Concentrations of heavy metals and plant nutrients in water, sediments and aquatic macrophytes of anthropogenic lakes (former open cut brown coal mines) differing in stage of acidification. Science of the Total Environment, 28, 87–98.

    Article  Google Scholar 

  • Sanders, J. R., & Adams, T. M. (1987). The effects of pH and soil type on concentrations of zinc, copper and nickel extracted by calcium chloride from sewage sludge-treated soils. Environmental Pollution A, 43, 219–228.

    Article  CAS  Google Scholar 

  • Sawicka-Kapusta, K. (1990a). Plant reaction to sulfur dioxide and heavy metals pollution in the environment: Bioindication. Wiad. Ekol., 36, 95–109.

    Google Scholar 

  • Sawicka-Kapusta, K. (1990b). Assessment of the environmental pollution around a steelworks with use of indicator plants. Arch. Ochr. Środ., 1–2, 79–99.

    Google Scholar 

  • Sawicka-Kapusta, K., Świergosz, R., Zając, K. P., & Koczańska, W. (1990). Evaluation of the pollution of the Olkusz region on the basis of research on the vegetation of agricultural land. Zesz. Nauk. AGH, 1368, 183–199.

    Google Scholar 

  • Schauff, M. E. (2001). Collecting and preserving insects and mites: Techniques and tools (Vol. 20560, pp. 1–68). Systematic Entomology Laboratory, USDA, National Museum of Natural History, NHB 168, Washington, DC.

  • Shi, D., & Sheng, Y. (2005). Effect of various salt–alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors. Environmental and Experimental Botany, 54, 8–21.

    Article  CAS  Google Scholar 

  • Siddique, M. A. M., & Aktar, M. (2012). Heavy metals in salt marsh sediments of porteresia bed along the Karnafully river coast, Chittagong. Soil and Water Research, 7(3), 117–123.

    Google Scholar 

  • Silvestri, S., Defina, A., & Marani, M. (2005). Tidal regime, salinity and salt marsh plant zonation. Estuarine, Coastal and Shelf Science., 62, 119–130.

    Article  CAS  Google Scholar 

  • Southwood, T. R. E., & Henderson, P. A. (2000). Ecological methods (3rd ed.). New Jersey: Blackwell Science.

    Google Scholar 

  • Stolz, J. F., & Oremland, R. S. (1999). Bacterial respiration of arsenic and selenium. FEMS Microbiology Reviews, 23, 615–627.

    Article  CAS  Google Scholar 

  • Sundareshwar, P. V., Morris, J. T., Koepfler, E. K., & Fornwalt, B. (2003). Phosphorous limitation of coastal ecosystem processes. Science, 299, 563–565.

    Article  CAS  Google Scholar 

  • Szafer, W., Kulczyński, S., & Pawłowski, B. (1986). Polish plants. PWN-Pol. Sci. Publ., Warszawa, v.1, 2.

  • Szczepaniak, W. (1996). Instrumental methods in chemical analysis. Warszawa: WNT.

    Google Scholar 

  • Teal, J. M., & Howes, B. L. (2000). Salt marsh values; retrospection from the end of the century. In M. P. Weinstain & D. A. Kreeger (Eds.), Concepts and controversies in tidal marsh ecology (pp. 3–7). Dordrecht: Kluwer Acad. Publ.

    Google Scholar 

  • Teuchies, J. (2012). The biogeochemical cycle of metals in natural freshwater tidal marshes and in flood control areas. Ph.D. Thesis, Universiteit Antwerpen, Faculteit Wetenschappen, Departement Biologie, ISBN: 9789057284021, Depot Nr: D/2012/12.293/41.

  • Tretyakova, I. N., & Noskova, N. E. (2004). Scotch pine pollen under conditions of environmental stress. Russian Journal of Ecology, 35(1), 20–33.

    Article  Google Scholar 

  • Ulgenturk, S., & Toros, S. (1993). Effects of environmental pollution on insects. J. Turk. Entomol. Dergisi, 17(1), 55–64.

    Google Scholar 

  • USA Environmental Protection Agency (USA EPA). (2001). 2001 update of Ambient Water Quality Criteria for Cadmium. EPA-822-R-01-001.

  • Weis, J. S., & Weis, P. (2003). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30, 685–700.

    Article  CAS  Google Scholar 

  • Weltz, B. (1985). Atomic absorption spectrometry. Berlin: VCH Veincheim.

    Google Scholar 

  • Więckowska, J. (1997). Differential thermal analysis and thermogravimetry: The edition of Wrocław Techn. Wrocław: High University.

    Google Scholar 

  • Wiktor, A. (2004). Ślimaki lądowe Polski. Gastropoda. Mantis, Olsztyn.

  • Williams, T. P., Bubb, J. M., & Lester, J. N. (1994). Metal accumulation within salt marsh environments: A review. Marine Pollution Bulletin, 38, 277–290.

    Article  Google Scholar 

  • Wolf, K., Van den Brink, W. J., & Colon F. J. (Eds.). (1988). Contaminated soil. Kluwer Acad. Pub: Dordrecht, Boston, London, v.1, 2.

  • Woźny, A., & Przybył, K. (2007). Komórki roslinne w warunkach stresu. T. I, II. Cz. I, II. Wyd. Nauk. UAM, Poznań.

  • Wu, C., Chen, X., & Tang, J. (2005). Lead accumulation in weed communities with various species. Communications in Soil Science and Plant Analysis, 36, 1891–1902.

    Article  CAS  Google Scholar 

  • Ye, Z. H., Cheung, K. C., & Wong, M. H. (2001). Copper uptake in Typha latifolia as affected by iron and manganese plaque on the root surface. Canadian Journal of Botany, 79, 314–320.

    Article  CAS  Google Scholar 

  • Zar, J. H. (1998). Biostatistical analysis (4th ed.). Englewood Cliffs, NJ: Prentice-Hall Inc.

    Google Scholar 

  • Zhu, X., Jing, Y., Chen, G., Wang, S., & Zhang, C. (2003). Solute levels and osmoregulatory enzyme activities in reed plants adapted to drought and saline habitats. Plant Growth Regulation, 41, 165–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Professor Brendan P. Kavanagh (Royal College of Surgeons in Ireland) for his help with improving English language of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Kamiński.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamiński, P., Barczak, T., Bennewicz, J. et al. Effects of chemical elements in the trophic levels of natural salt marshes. Environ Geochem Health 38, 783–810 (2016). https://doi.org/10.1007/s10653-015-9761-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9761-5

Keywords

Navigation