Environmental Geochemistry and Health

, Volume 38, Issue 3, pp 703–712 | Cite as

Health effects of the 2012 Valencia (Spain) wildfires on children in a cohort study

  • Ana M. Vicedo-Cabrera
  • Ana Esplugues
  • Carmen Iñíguez
  • Marisa Estarlich
  • Ferran Ballester
Original Paper


In July 2012, two simultaneous wildfires burnt a big area in Valencia (Spain), where a birth cohort study (INMA) is being developed. The heavy smoke covered the whole INMA study area for several days. We aimed at evaluating the 2012 Valencia wildfire effects on the health of children enrolled in the INMA-Valencia cohort. Two weeks after the extinction of the wildfires, a phone survey was conducted and finally 460 individuals were enrolled. We considered a wildfire period (12-day interval when they were active) and a control period (12-day interval just before wildfires). Parents were asked about respiratory symptoms experienced during both periods, and during wildfires only about the preventive measures adopted and the perception of exposure, along with individual data collected through the different follow-up surveys of the cohort. Conditional logistic regression models were applied, and we included interaction terms for asthma/rhinitis and level of perception of exposure; 82.4 % perceived smoke smell outdoors, 40 % indoors and more than 90 % of the families observed the presence of ash. An adjusted odds ratio of 3.11 [95 % confidence interval 1.62–5.97] for itchy/watery eyes and 3.02 [1.41–6.44] for sore throat was obtained. Significant interaction terms for rhinitis and asthma in itchy/watery eyes and sneezing, and only asthma for sore throat were obtained. Exposure to wildfire smoke was associated with increased respiratory symptoms in this child population, particularly affecting susceptible individuals with asthma or rhinitis.


Wildfire Children Allergy Air pollution Cohort Asthma Rhinitis 



Fondo de Investigación Sanitaria (FIS)-FEDER (Fondo Europeo de Desarrollo Regional) 06/1213, 07/0314, PS09/02647 FIS PI11/02591, FIS PI11/02038, and FIS PI13/02032.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no actual or potential competing financial interests.

Supplementary material

10653_2015_9753_MOESM1_ESM.doc (52 kb)
Supplementary material 1 (DOC 52 kb)


  1. Amster, E. D., Fertig, S. S., Baharal, U., Linn, S., Green, M. S., Lencovsky, Z., & Carel, R. S. (2013). Occupational exposures and symptoms among firefighters and police during the Carmel forest fire: The Carmel cohort study. The Israel Medical Association Journal: IMAJ, 15(6), 288–292.Google Scholar
  2. Analitis, A., Georgiadis, I., & Katsouyanni, K. (2012). Forest fires are associated with elevated mortality in a dense urban setting. Occupational and Environmental Medicine, 69(3), 158–162. doi: 10.1136/oem.2010.064238.CrossRefGoogle Scholar
  3. Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the air: A review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology, 8(2), 166–175. doi: 10.1007/s13181-011-0203-1.CrossRefGoogle Scholar
  4. Betha, R., Behera, S. N., & Balasubramanian, R. (2014). 2013 Southeast Asian smoke haze: Fractionation of particulate-bound elements and associated health risk. Environmental Science and Technology, 48(8), 4327–4335. doi: 10.1021/es405533d.CrossRefGoogle Scholar
  5. Caamano-Isorna, F., Figueiras, A., Sastre, I., Montes-Martínez, A., Taracido, M., & Piñeiro-Lamas, M. (2011). Respiratory and mental health effects of wildfires: An ecological study in Galician municipalities (north–west Spain). Environmental Health: A Global Access Science Source, 10, 48. doi: 10.1186/1476-069X-10-48.CrossRefGoogle Scholar
  6. Crabbe, H. (2012). Risk of respiratory and cardiovascular hospitalisation with exposure to bushfire particulates: New evidence from Darwin, Australia. Environmental Geochemistry and Health, 34(6), 697–709. doi: 10.1007/s10653-012-9489-4.CrossRefGoogle Scholar
  7. Delfino, R. J., Brummel, S., Wu, J., Stern, H., Ostro, B., Lipsett, M., et al. (2009). The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occupational and Environmental Medicine, 66(3), 189–197. doi: 10.1136/oem.2008.041376.CrossRefGoogle Scholar
  8. Domingo-Salvany, A., Regidor, E., Alonso, J., & Alvarez-Dardet, C. (2000). Proposal for a social class measure. Working Group of the Spanish Society of Epidemiology and the Spanish Society of Family and Community Medicine. Atencion primaria/Sociedad Española de Medicina de Familia y Comunitaria, 25(5), 350–363.CrossRefGoogle Scholar
  9. Elliott, C. T., Henderson, S. B., & Wan, V. (2013). Time series analysis of fine particulate matter and asthma reliever dispensations in populations affected by forest fires. Environmental Health: A Global Access Science Source, 12(1), 11. doi: 10.1186/1476-069X-12-11.CrossRefGoogle Scholar
  10. Emmanuel, S. C. (2000). Impact to lung health of haze from forest fires: The Singapore experience. Respirology (Carlton, Vic.), 5(2), 175–182.CrossRefGoogle Scholar
  11. Gao, Y., Chan, E. Y. Y., Li, L. P., He, Q. Q., & Wong, T. W. (2013). Chronic effects of ambient air pollution on lung function among Chinese children. Archives of Disease in Childhood, 98(2), 128–135. doi: 10.1136/archdischild-2011-301541.CrossRefGoogle Scholar
  12. Gauderman, W. J., Avol, E., Gilliland, F., Vora, H., Thomas, D., Berhane, K., et al. (2004). The effect of air pollution on lung development from 10 to 18 years of age. The New England Journal of Medicine, 351(11), 1057–1067. doi: 10.1056/NEJMoa040610.CrossRefGoogle Scholar
  13. Gruzieva, O., Bergström, A., Hulchiy, O., Kull, I., Lind, T., Melén, E., et al. (2013). Exposure to air pollution from traffic and childhood asthma until 12 years of age. Epidemiology (Cambridge, Mass.), 24(1), 54–61. doi: 10.1097/EDE.0b013e318276c1ea.CrossRefGoogle Scholar
  14. Guxens, M., Ballester, F., Espada, M., Fernández, M. F., Grimalt, J. O., Ibarluzea, J., et al. (2012). Cohort profile: The INMA–INfancia y Medio Ambiente–(Environment and Childhood) project. International Journal of Epidemiology, 41(4), 930–940. doi: 10.1093/ije/dyr054.CrossRefGoogle Scholar
  15. Hanigan, I. C., Johnston, F. H., & Morgan, G. G. (2008). Vegetation fire smoke, indigenous status and cardio-respiratory hospital admissions in Darwin, Australia, 1996-2005: A time-series study. Environmental Health: A Global Access Science Source, 7, 42. doi: 10.1186/1476-069X-7-42.CrossRefGoogle Scholar
  16. Iskandar, A., Andersen, Z. J., Bønnelykke, K., Ellermann, T., Andersen, K. K., & Bisgaard, H. (2012). Coarse and fine particles but not ultrafine particles in urban air trigger hospital admission for asthma in children. Thorax, 67(3), 252–257. doi: 10.1136/thoraxjnl-2011-200324.CrossRefGoogle Scholar
  17. Jalaludin, B., Smith, M., O’Toole, B., & Leeder, S. (2000). Acute effects of bushfires on peak expiratory flow rates in children with wheeze: A time series analysis. Australian and New Zealand Journal of Public Health, 24(2), 174–177.CrossRefGoogle Scholar
  18. Johnston, F. H., Bailie, R. S., Pilotto, L. S., & Hanigan, I. C. (2007). Ambient biomass smoke and cardio-respiratory hospital admissions in Darwin, Australia. BMC Public Health, 7, 240. doi: 10.1186/1471-2458-7-240.CrossRefGoogle Scholar
  19. Johnston, F. H., Henderson, S. B., Chen, Y., Randerson, J. T., Marlier, M., Defries, R. S., et al. (2012). Estimated global mortality attributable to smoke from landscape fires. Environmental Health Perspectives, 120(5), 695–701. doi: 10.1289/ehp.1104422.CrossRefGoogle Scholar
  20. Johnston, F. H., Kavanagh, A. M., Bowman, D. M. J. S., & Scott, R. K. (2002). Exposure to bushfire smoke and asthma: An ecological study. The Medical Journal of Australia, 176(11), 535–538.Google Scholar
  21. Kuehni, C. E., Strippoli, M.-P. F., Zwahlen, M., & Silverman, M. (2006). Association between reported exposure to road traffic and respiratory symptoms in children: Evidence of bias. International Journal of Epidemiology, 35(3), 779–786. doi: 10.1093/ije/dyl022.CrossRefGoogle Scholar
  22. Künzli, N., Avol, E., Wu, J., Gauderman, W. J., Rappaport, E., Millstein, J., et al. (2006). Health effects of the 2003 Southern California wildfires on children. American Journal of Respiratory and Critical Care Medicine, 174(11), 1221–1228. doi: 10.1164/rccm.200604-519OC.CrossRefGoogle Scholar
  23. MacNee, W., & Donaldson, K. (2003). Mechanism of lung injury caused by PM10 and ultrafine particles with special reference to COPD. The European Respiratory Journal. Supplement, 40, 47s–51s.CrossRefGoogle Scholar
  24. Makino, K. (2000). Association of school absence with air pollution in areas around arterial roads. Journal of Epidemiology/Japan Epidemiological Association, 10(5), 292–299.CrossRefGoogle Scholar
  25. Mirabelli, M. C., Künzli, N., Avol, E., Gilliland, F. D., Gauderman, W. J., McConnell, R., & Peters, J. M. (2009). Respiratory symptoms following wildfire smoke exposure: Airway size as a susceptibility factor. Epidemiology (Cambridge, Mass.), 20(3), 451–459. doi: 10.1097/EDE.0b013e31819d128d.CrossRefGoogle Scholar
  26. Miranda, A. I., Martins, V., Cascão, P., Amorim, J. H., Valente, J., Borrego, C., et al. (2012). Wildland smoke exposure values and exhaled breath indicators in firefighters. Journal of Toxicology and Environmental Health. Part A, 75(13–15), 831–843. doi: 10.1080/15287394.2012.690686.CrossRefGoogle Scholar
  27. Ostro, B., Roth, L., Malig, B., & Marty, M. (2009). The effects of fine particle components on respiratory hospital admissions in children. Environmental Health Perspectives, 117(3), 475–480. doi: 10.1289/ehp.11848.CrossRefGoogle Scholar
  28. Pavagadhi, S., Betha, R., Venkatesan, S., Balasubramanian, R., & Hande, M. P. (2013). Physicochemical and toxicological characteristics of urban aerosols during a recent Indonesian biomass burning episode. Environmental Science and Pollution Research International, 20(4), 2569–2578. doi: 10.1007/s11356-012-1157-9.CrossRefGoogle Scholar
  29. Peters, A., Dockery, D. W., Heinrich, J., & Wichmann, H. E. (1997). Short-term effects of particulate air pollution on respiratory morbidity in asthmatic children. The European Respiratory Journal, 10(4), 872–879.Google Scholar
  30. Pope, C. A, 3rd, & Dockery, D. W. (2006). Health effects of fine particulate air pollution: Lines that connect. Journal of the Air & Waste Management Association (1995), 56(6), 709–742.CrossRefGoogle Scholar
  31. Ribeiro, M., de Paula Santos, U., Bussacos, M. A., & Terra-Filho, M. (2009). Prevalence and risk of asthma symptoms among firefighters in São Paulo, Brazil: A population-based study. American Journal of Industrial Medicine, 52(3), 261–269. doi: 10.1002/ajim.20669.CrossRefGoogle Scholar
  32. Vora, C., Renvall, M. J., Chao, P., Ferguson, P., & Ramsdell, J. W. (2011). 2007 San Diego wildfires and asthmatics. The Journal of Asthma, 48(1), 75–78. doi: 10.3109/02770903.2010.535885.CrossRefGoogle Scholar
  33. Woodruff, T. J., Parker, J. D., & Schoendorf, K. C. (2006). Fine particulate matter (PM2.5) air pollution and selected causes of postneonatal infant mortality in California. Environmental Health Perspectives, 114(5), 786–790.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ana M. Vicedo-Cabrera
    • 1
    • 2
  • Ana Esplugues
    • 3
    • 1
    • 2
  • Carmen Iñíguez
    • 1
    • 3
    • 2
  • Marisa Estarlich
    • 2
    • 1
    • 3
  • Ferran Ballester
    • 3
    • 1
    • 2
  1. 1.Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO – Public HealthValenciaSpain
  2. 2.Spanish Consortium for Research on Epidemiology and Public Health CIBERESPValenciaSpain
  3. 3.Faculty of NursingUniversity of ValenciaValenciaSpain

Personalised recommendations