Environmental Geochemistry and Health

, Volume 38, Issue 2, pp 497–509 | Cite as

Lithological and hydrochemical controls on distribution and speciation of uranium in groundwaters of hard-rock granitic aquifers of Madurai District, Tamil Nadu (India)

  • C. Thivya
  • S. Chidambaram
  • Tirumalesh Keesari
  • M. V. Prasanna
  • R. Thilagavathi
  • V. S. Adithya
  • C. Singaraja
Original Paper


Uranium is a radioactive element normally present in hexavalent form as U(VI) in solution and elevated levels in drinking water cause health hazards. Representative groundwater samples were collected from different litho-units in this region and were analyzed for total U and major and minor ions. Results indicate that the highest U concentration (113 µg l−1) was found in granitic terrains of this region and about 10 % of the samples exceed the permissible limit for drinking water. Among different species of U in aqueous media, carbonate complexes [UO2(CO3) 2 2− ] are found to be dominant. Groundwater with higher U has higher pCO2 values, indicating weathering by bicarbonate ions resulting in preferential mobilization of U in groundwater. The major minerals uraninite and coffinite were found to be supersaturated and are likely to control the distribution of U in the study area. Nature of U in groundwater, the effects of lithology on hydrochemistry and factors controlling its distribution in hard rock aquifers of Madurai district are highlighted in this paper.


Uranium Hard-rock aquifer U-speciation Lithology 



The authors express their sincere thanks to University Grants Commission (UGC), India, for providing the necessary financial support to this research project with wide reference to UGC Letter No. F: 39-143/2010 (SR) dated December 27, 2010.


  1. AERB, Dae (Atomic Energy Regulatory Board, Department of Atomic Energy). (2004). Drinking water specifications in India. Mumbai, India: Atomic Energy Regulatory Board.Google Scholar
  2. Ali, M., Shariff, A. A., Qamar, N. A., & Laghari, A. (2013). An appraisal of uranium source potential of granites, associated felsic rocks, kaolin and calcretes of Nagar Parkar area, Tharparkar Pakistan. Journal of Himalayan Earth Sciences, 46(1), 31–39.Google Scholar
  3. APHA. (1992). Standard methods for the examination of water and wastewater (19th ed.). Washington, DC: APHA.Google Scholar
  4. Braum, I. (2006). Pan-African granitic magmatism in the Kerala Khondalite belt, Southern India. Journal of Asian Earth Sciences, 26, 36–45.Google Scholar
  5. Bucur, C., Olteanu, M., & Pavelescu, M. (2006). Radionuclides diffusion in geological media. Romania Journal of Physics, 51(3–4), 469–478.Google Scholar
  6. Burns, P., & Finch, R. (1999). Uranium, mineralogy, geochemistry and the environment, reviews in mineralogy. Mineralogical society of America, 38, 1–679.Google Scholar
  7. CGWB. (2007). District groundwater brochure. Madurai, India: Central Groundwater Board.Google Scholar
  8. Chau, N. D., & Michalec, B. (2009). Natural radioactivity in bottled natural spring, mineral and therapeutic waters in Poland. Journal of radio analytical and nuclear chemistry., 279(1), 121–129.CrossRefGoogle Scholar
  9. Chidambaram, S., Prasanna, M. V., Karmegam, U., Singaraja, C., Pethaperumal, S., Manivannan, R., et al. (2011). Significance of pCO2 values in determining carbonate chemistry in groundwater of Pondicherry region, India. Frontiers in earth sciences, 5(2), 197–206.CrossRefGoogle Scholar
  10. Chidambaram, S., Senthilkumar, G., Prasanna, M. V., John Peter, A., Ramanathan, A. L., & Srinivasamoorthy, K. (2009). A study on the hydrogeology and hydrogeochemistry of groundwater frpm different depths in a coastal aquifer: Annamalai nagar, Tamilnadu, India. Environmental Geology, 57, 59–73.CrossRefGoogle Scholar
  11. Chidambaram, S., Vijayakumar, V., Srinivasamoorthy, K., Anandhan, P., Prasanna, M. V., & Vasudeven, S. (2007). A study on variation in ionic composition of aqueous system in different lithounits around Perambalur Region, Tamil nadu. Geological Society of India, 70, 1061–1069.Google Scholar
  12. Choppin, G. R. (2007). Actinide speciation in the environment. Journal of Radioanalytical and Nuclear Chemistry, 273(3), 695–703.CrossRefGoogle Scholar
  13. Ciavatta, L., Ferri, D., Grenthe, I., & Salvatore, F. (1981). The first acidification step of the tris (carbonato) dioxourantantate (VI) ion, UO2(CO3)34−. Journal of inorganic chemistry, 20, 463–467.CrossRefGoogle Scholar
  14. De Camargo, I. M. C., & Mazzilli, B. (1996). Determination of uranium and thorium isotopes in mineral spring waters. Journal of radio analytical Nuclear Chemistry, 212(4), 251–258.CrossRefGoogle Scholar
  15. Dillon, M. E., Carter, G. L., Arora, R., & Kahn, B. (1991). Radon concentrations in groundwater of Georgia piedmont. Health Physics, 60, 229–236.CrossRefGoogle Scholar
  16. Drever, J. I. (1988). The geochemistry of natural waters (2nd ed.). New York: Prentice-Hall.Google Scholar
  17. Duff, M. C., & Amrhein, C. (1996). Uranium(VI) adsorption on Goethite and soil in carbonate solutions. Soil Science Society of America Journal, 60, 1393–1400.CrossRefGoogle Scholar
  18. Freeze, A. R., & Cherry, J. A. (1979). Groundwater (p. 604). Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  19. Gavrilescu, M., Pavel, L. V., & Cretescu, I. (2009). Characterization and remediation of soils contaminated with uranium. Journal of hazardous material, 163, 475–510.CrossRefGoogle Scholar
  20. GSI (Geological Survey of India). (1995). Geological and mineral map of Kerala and Tamil Nadu.Google Scholar
  21. Gueniot, B., Munier-Lamy, C., & Berthelin, J. (1988). Geochemical behavior of uranium in soils, part II. Distribution of uranium in hydromorphic soils and soil sequences. Applications for surficial prospecting. Journal of Geochemical Exploration, 31(1), 39–55.CrossRefGoogle Scholar
  22. Ioannides, K. G., Mertzimekis, T. J., Parachristodoulou, C. A., & Tzialla, C. E. (1997). Measurements of natural radioactivity in phosphate fertilizers. The Science of the Total Environment, 196, 63–67.CrossRefGoogle Scholar
  23. Ioannidou, A., Samaropoulos, I., Efstathiou, M., & Pashalidis, I. (2011). Uranium in ground water samples of Northern Greece. Journal of radio analytical Nuclear Chemistry, 289, 551–555.CrossRefGoogle Scholar
  24. Jurgens, B. C., Fram, M. S., Belitz, K., Burow, K. R., & Landon, M. K. (2009). Effects of groundwater development on Uranium: Central valley, California, USA. Groundwater, 48(6), 913–928.CrossRefGoogle Scholar
  25. Killiari, T., & Pashalidis, I. (2010). Simplified alpha-spectroscopic analysis of uranium in natural waters after its separation by cation-exchange. Radiation Measurements, 45(8), 966–968.CrossRefGoogle Scholar
  26. Langmuir, D. (1978). Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochimica et Cosmochimica Acta, 42, 547–569.CrossRefGoogle Scholar
  27. Langmuir, D. (1997). Aqueous environmental geochemistry. Upper Saddle River, NJ: Prentice Hall.Google Scholar
  28. Lowry, J. D., Hoxie, D. C., & Moreau, E. (1987). Extreme levels of 222Rn and U in private water supply. In G. Barbara (Ed.), Radon radium and other radionuclides in airborne contamination. Proceedings of a conference, National water well association (pp. 363–376). Ann Arbor, MI: Lewis Publishers.Google Scholar
  29. Michel, J. (1991). Relationship of radium and radon with geological formations. In C. R. Cothern, P. A. Rebers (Eds.), Chapter 7 in Radon, radium and uranium in drinking water (pp. 83–96). Boca Raton, FL: Lewis Publishers.Google Scholar
  30. Murphy, W. M., & Shock, E. L. (1999). Environmental aqueous geochemistry of actinides. In P. C. Burns, R. Finch (Eds.), Uranium: Mineralogy, geochemistry and the environment. Reviews in Mineralogy (Vol. 38, pp. 221–254).Google Scholar
  31. Ortega, X., Valles, I., & Serrano, I. (1996). Natural radioactivity in drinking water in Catalonia (Spain). Environment International, 22(1), 347–354.CrossRefGoogle Scholar
  32. Otwoma, D., & Mustapha, A. O. (1998). Measurement of 222Rn concentration in Kenyan groundwater. Health Physics, 74(1), 91–95.CrossRefGoogle Scholar
  33. Pandey, U. K., & Krishnamurthy, P. (1995). Uranium and thorium abundances in some graphite-bearing Precambrian rocks of India and implications. Current Science, 68(8), 826–828.Google Scholar
  34. Porcelli, D., & Swarzenski, P. W. (2003). The behavior of U- and Th-series nuclides in groundwater in Uranium-Series Geochemistry. Reviews in Mineralogy and Geochemistry, 52(1), 317–361.CrossRefGoogle Scholar
  35. Prasanna, M. V., Chidambaram, S., Shahul Hameed, A., & Srinivasamoorthy, K. (2010). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environmental Monitoring and Assessment, 15(4), 145–152.Google Scholar
  36. Prasanna, M. V., Chidambaram, S., Vasu, K., Shahul Hameed, A., Unnikrishna Warrier, C., Srinivasamoorthy, K., et al. (2008). Identification of the geochemical processes in coastal groundwater using hydrogeochemical and isotopic data: A case study of the Gadilam river basin in southern India. Indian Journal of Marine Sciences, 37(2), 200–206.Google Scholar
  37. Roselli, C., Desideri, D., & Meli, M. A. (2009). Radiological characterization of phosphate fertilisers: Comparison between alpha and gamma spectroscopy. Microchemical Journal, 91(2), 181–186.CrossRefGoogle Scholar
  38. Siegel, M. D., & Bryan, C. R. (2004). Environmental geochemistry of radioactive contamination. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (Vol. 9, pp. 205–262). Amsterdam: Elsevier.Google Scholar
  39. Swan, A. R. H., & Sandilands, M. (1995). Introduction to geological data analysis. Oxford: Blackwell.Google Scholar
  40. Taffet, M., Madrid, V., Carlsen, T., Demir, Z., Valett, J., Dresen, M., Daily, W., Coleman, S., Dibley, V., & Ferry, L. (2004). Remedial investigation/feasibility study for the Pit 7 complex at Lawrence Livermore National Laboratory Site 300, Lawrence Livermore National Laboratory, Livermore, CA (UCRL-AR-202492).Google Scholar
  41. Thivya, C. (2013). Study on Uranium in groundwater of Madurai district, Tamilnadu. Unpublished Ph.D. thesis, Department of Earth Sciences, Annamalai University.Google Scholar
  42. Thivya, C., Chidambaram, S., Singaraja, C., Thilagavathi, R., Prasanna, M. V., Anandan, P., & Jainab, I. (2013a). A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environmental development and sustainability, 15(5), 1365–1387.CrossRefGoogle Scholar
  43. Thivya, C., Chidambaram, S., Thilagavathi, R., Prasanna, M. V., Singaraja, C., Nepolian, M., & Sundarrajan, M. (2013b). Identification of the geochemical processes in groundwater by factor analysis in hard rock aquifers of Madurai district South India. Arabian Journal of Geosciences,. doi: 10.1007/s12517-013-1065-4.Google Scholar
  44. Thivya, C., Chidambaram, S., Tirumalesh, K., Prasanna, M. V., Thilagavathi, R., & Nepolian, M. (2014). Occurrence of the radionuclides in groundwater of crystalline hard rock regions of central Tamil Nadu, India. Journal of Radio Analytical and Nuclear Chemistry, 302, 1349–1355.CrossRefGoogle Scholar
  45. Thomas, M. A. A. (1987). Connecticut radon study using limited water sampling and a statewide ground based gamma survey to help guide an indoor air testing program. A progress report. In G. Barbara (Ed.), Radon, radium and other radioactivity in airborne contamination. Proceedings of a conference, National water well association (pp. 347–362). Ann Arbor, MI: Lewis Publishers.Google Scholar
  46. Trusdell, A. H., & Jones, B. F. (1973). WATEQ: A computer program for calculating chemical equilibria of natural waters. Journal of Research US Geological Survey, 2(2), 233–248.Google Scholar
  47. WHO (World Health Organization). (2012). Guidelines for drinking-water quality (3rd edn, Vol. 1, Recommendations). Geneva. ISBN: 92 4 154696.Google Scholar
  48. Zou, W., Bai, H., Zhao, L., Li, K., & Han, R. (2011). Characterization and properties of zeolite as adsorbent for removal of uranium (VI) from solution in fixed bed column. Journal of Radio Analytical and Nuclear Chemistry, 288, 779–788. doi: 10.1007/s10967-011-1026-x.CrossRefGoogle Scholar
  49. Zachara J. M., Brown, C., Christensen, J., Davis, J. A., Dresel, E., Liu, C., Kelly, S., Mckinley, J., Serne, J., & Um, W. (2007). A site-wide perspective on Uranium geochemistry at the Hanford site. US Department of Energy Publications. Paper 286. http://digitalcommons.unl.edu/usdoepub/286.
  50. Zelensky, A. V., Buzinny, M. G., & Los, I. P. (1993). Measurements of 226Ra and 222Rn and uranium in Ukrainian groundwater using ultra-low-level liquid scintillation counting. In J.E. Noakes, F. Schoenhofer, H.A. Polach (Eds.), Liquid scintillation spectrometry, 1992. Radiocarbon (pp. 405–411).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • C. Thivya
    • 1
  • S. Chidambaram
    • 1
  • Tirumalesh Keesari
    • 2
  • M. V. Prasanna
    • 3
  • R. Thilagavathi
    • 1
  • V. S. Adithya
    • 1
  • C. Singaraja
    • 1
  1. 1.Department of Earth SciencesAnnamalai UniversityAnnamalai NagarIndia
  2. 2.Isotope Production and Applications DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Department of Applied Geology, Faculty of Engineering and ScienceCurtin UniversityMiriMalaysia

Personalised recommendations