Environmental Geochemistry and Health

, Volume 38, Issue 1, pp 195–202 | Cite as

Increase in platinum group elements in Mexico City as revealed from growth rings of Taxodium mucronatum ten

  • Ofelia Morton-Bermea
  • Laura Beramendi-Orosco
  • Ángeles Martínez-Reyes
  • Elizabeth Hernández-Álvarez
  • Galia González-Hernández
Original Paper


Tree rings may be used as indicators of contamination events providing information on the chronology and the elemental composition of the contamination. In this framework, we report PGEs enrichment in growth rings of Taxodium mucronatum ten for trees growing in the central area of Mexico City as compared to trees growing in a non-urban environment. Concentrations of PGE were determined by ICP-MS analysis on microwave-digested tree rings. The element found in higher concentrations was Pd (1.13–87.98 μg kg−1), followed by Rh (0.28–36.81 μg kg−1) and Pt (0.106–7.21 μg kg−1). The concentration trends of PGEs in the tree-ring sequences from the urban area presented significant correlation values when comparing between trees (r between 0.618 and 0.98, P < 0.025) and between elements within individual trees (r between 0.76 and 0.994, P < 0.01). Furthermore, a clear increase was observed for rings after 1997, with enrichment of up to 60 times the mean concentration found for the sequence from the non-urban area and up to 40 times the mean concentration for the pre-1991 period in the urban trees. These results also demonstrate the feasibility of applying T. mucronatum ten to be used as a bioindicator of the increase in PGE in urban environments.


Platinum group elements Biomonitoring Dendrochronology Mexico City 



We thank DGAPA (Dirección General de Asuntos del Personal Académico, UNAM) for the financial support of this study (Projects IN106113 and IN101612). Support from José Villanueva (Laboratorio Nacional de Dendrocronología, INIFAP), for helping with both dendrochronologies, is gratefully acknowledged. The authorities of Bosque de Chapultepec are thanked for granting sampling permission.


  1. Aznar, J. C., Richer-Laflèche, M., Bégin, C., & Rodriguez, R. (2008). Spatiotemporal reconstruction of lead contamination using tree rings and organic soil layers. Science of the Total Environment, 407, 233–241.CrossRefGoogle Scholar
  2. Bellis, D. J., Satake, K., Noda, M., Nishimura, N., & McLeod, C. W. (2002). Evaluation of the historical records of lead pollution in the annual growth rings and bark pockets of a 250-year-old Quercus crispula in Nikko, Japan. Science of the Total Environment, 295, 91–100.CrossRefGoogle Scholar
  3. Beramendi-Orosco, L. E., Rodriguez-Estrada, M. L., Morton-Bermea, O., Romero, F. M., Gonzalez-Hernandez, G., & Hernandez-Alvarez, E. (2013). Correlations between metals in tree-rings of Prosopis julifora as indicators of sources of heavy metal contamination. Applied Geochemistry, 39, 78–84.CrossRefGoogle Scholar
  4. Cui, M., He, X., Davi, N., Chen, Z., Zhang, X., Peng, J., & Chen, W. (2013). Evidence of century-scale environmental changes: Trace element in tree-ring from Fuling Mausoleum Shenyang, China. Dendrochronologia, 31(1), 1–8.CrossRefGoogle Scholar
  5. Djingova, R., Heidenreich, H., Kovacheva, P., & Markert, B. (2003). On the determination of platinum group elements in environmental materials by inductively coupled plasma mass spectrometry and microwave digestion. Analytica Chimica Acta, 489(2), 245–251.Google Scholar
  6. Dongarra, G., Varrica, D., & Sabatino, G. (2003). Occurrence of platinum, palladium and gold in pine needles of Pinus pinea L. from the city of Palermo (Italy). Applied Geochemistry, 18(1), 109–116.CrossRefGoogle Scholar
  7. Geraldo, S. M., Canteras, F. B., & Moreira, S. (2014). Biomonitoring of environmental pollution using growth tree rings of Tipuana tipu: Quantification by synchrotron radiation total reflection X-ray fluorescence. Radiation Physics and Chemistry, 95, 346–348.CrossRefGoogle Scholar
  8. INEGI Instituto Nacional de Estadística y Geografía (2011). Cuaderno Estadístico de la Zona Metropolitana del Valle de México. Accessed October 2014.
  9. Lageard, J. G. A., Howell, J. J., Rothwell, B., & Drew, I. B. (2008). The utility of Pinus sylvestris L. in dendrochemical investigations: Pollution impact of lead mining and smelting in Darley Dale, Derbyshire. Environmental Pollution, 153, 284–294.CrossRefGoogle Scholar
  10. Ma, R., Staton, I., McLeod, C. W., Gomez, M. B., Gomez, M. M., & Palacios, M. A. (2001). Assessment of airborne platinum contamination via ICP-mass spectrometric analysis of tree bark. Journal of Analytical Atomic Spectrometry, 16(9), 1070–1075.CrossRefGoogle Scholar
  11. Morton, O., Puchelt, H., Hernández, E., & Lounejeva, E. (2001). Traffic-related platinum group elements (PGE) in soils from Mexico City. Journal of Geochemical Exploration, 72(3), 223–227.CrossRefGoogle Scholar
  12. Morton-Bermea, O., Amador-Muñoz, O., Martínez-Trejo, L., Hernández-Álvarez, E., Beramendi-Orosco, L., García-Arreola, M. E. (2014). Platinum in PM2. 5 of the metropolitan area of Mexico City. Environmental Geochemistry and Health, 36(5), 987–994.Google Scholar
  13. Morton-Bermea, O., Hernández-Álvarez, E., González-Hernández, G., Romero, F., Lozano, R., & Beramendi-Orosco, L. E. (2009). Assessment of heavy metal pollution in urban topsoils from the metropolitan area of Mexico City. Journal of Geochemical Exploration, 101, 218–224.CrossRefGoogle Scholar
  14. Morton-Bermea, O., Hernández-Álvarez, E., Ordóñez-Godínez, S., Beramendi-Orosco, L. E., Vega-Rodríguez, J., & Amador-Muñoz, O. (2015). Increase of the environmental Pt concentration in the metropolitan area of Mexico city associated to the use of automobile catalytic converters. In Platinum metals in the environment (pp. 257–264). Springer Berlin Heidelberg.Google Scholar
  15. Nabais, C., Freitas, H., & Hagemeyer, J. (1999). Dendroanalysis: A tool for biomonitoring environmental pollution? Science of the Total Environment, 232, 33–37.CrossRefGoogle Scholar
  16. Orlandi, M., Pelfini, M., Pavan, M., Santilli, M., & Colombini, M. P. (2002). Heavy metals variations in some conifers in Valle d’ Aosta (Western Italian Alps) from 1930 to 2000. Microchemical Journal, 73, 237–244.CrossRefGoogle Scholar
  17. Rauch, S., Peucker-Ehrenbrink, B., Molina, L. T., Molina, M. J., Ramos, R., & Hemond, H. F. (2006). Platinum group elements in airborne particles in Mexico City. Environmental Science and Technology, 40(24), 7554–7560.CrossRefGoogle Scholar
  18. Rodríguez-Salazar, M. T., Morton-Bermea, O., Hernández-Álvarez, E., Lozano, R., & Tapia-Cruz, V. (2011). The study of metal contamination in urban topsoils of Mexico City using GIS. Environmental Earth Sciences, 62(5), 899–905.CrossRefGoogle Scholar
  19. Schäfer, J. & Puchelt, H. (1998). Platinum-Group-Metals (PGM) emitted from automobile catalytic converters and their distribution in roadside soils. Journal of Geochemical Exploration, 64(1), 307–314.Google Scholar
  20. Sheppard, P. R., Ort, M. H., Anderson, K. C., Elson, M. D., Vazquez-Selem, L., Clemens, A. W., et al. (2008). Multiple dendrochronological signals indicate the eruption of Parícutin volcano, Michoacán, Mexico. Tree-Ring Research, 64(2), 97–108.CrossRefGoogle Scholar
  21. Smith, K. T., & Shortle, W. C. (1996). Tree biology and dendrochemistry. In J. S. Dean, D. M. Meko, & T. W. Swetnam (Eds.), Tree rings, environment, and humanity (pp. 629–635). Tucson, AZ: Radiocarbon.Google Scholar
  22. Stahle, D. W., Diaz, J. V., Burnette, D. J., Paredes, J., Heim, R. R., Fye, F. K., Acuna Soto, R., Therrell, M. D., Cleaveland, M. K, Stahle, D. K. (2011). Major Mesoamerican droughts of the past millennium. Geophysical Research Letters, 38(5), L05703.Google Scholar
  23. Villanueva Díaz, J., Stahle, D. W., Therrel, M. D., Cleaveland, M. K., Camacho, Morfín F., De, Núñez Díaz, et al. (2003). Registros climáticos de los ahuehuetes de Chapultepec en los últimos 450 años. Boletín del Archivo Histórico del Agua, 23, 34–43.Google Scholar
  24. Vives, A. E. S., Silva, R. M. C., Medeiros, J Gda S, Tomazello-Filho, M., Barroso, R. C., Zucchi, O. L. A. D., & Moreira, S. (2005). Accumulation of elements in annual tree rings measured by synchrotron X-ray fluorescence analysis. X-Ray Spectrometry, 34, 411–416.CrossRefGoogle Scholar
  25. Watmough, S. A., & Hutchinson, T. C. (1996). Analysis of tree rings using inductively coupled plasma mass spectrometry to record fluctuations in a metal pollution episode. Environmental Pollution, 93, 93–102.CrossRefGoogle Scholar
  26. Watmough, S. A., & Hutchinson, T. C. (2003). A comparison of temporal patterns in trace metal concentration in tree rings of four common European tree species adjacent to a Cu–Cd refinery. Water, Air, and Soil pollution, 146, 225–241.CrossRefGoogle Scholar
  27. Witte, K. M., Wanty, R. B., & Ridley, W. I. (2004). Engelmann Spruce (Picea engelmannii) as a biological monitor of changes in soil metal loading related to past mining activity. Applied Geochemistry, 19, 1367–1376.CrossRefGoogle Scholar
  28. Wright, G., Woodward, C., Peri, L., Weisberg, P. J., & Gustin, M. S. (2014). Application of tree rings [dendrochemistry] for detecting historical trends in air Hg concentrations across multiple scales. Biogeochemistry, 120(1–3), 149–162.CrossRefGoogle Scholar
  29. Xu, X., Tong, L., & Stohlgren, T. J. (2014). Tree ring based Pb and Zn contamination history reconstruction in East China: A case study of Kalopanax septemlobus. Environmental Earth Sciences, 71(1), 99–106.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Ofelia Morton-Bermea
    • 1
  • Laura Beramendi-Orosco
    • 2
  • Ángeles Martínez-Reyes
    • 3
  • Elizabeth Hernández-Álvarez
    • 1
  • Galia González-Hernández
    • 1
  1. 1.Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Instituto de GeologíaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  3. 3.Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations