Environmental Geochemistry and Health

, Volume 36, Issue 5, pp 953–971 | Cite as

Comparison of methods used to calculate typical threshold values for potentially toxic elements in soil

  • Rebekka McIlwaine
  • Siobhan F. Cox
  • Rory Doherty
  • Sherry Palmer
  • Ulrich Ofterdinger
  • Jennifer M. McKinley
Original Paper


The environmental quality of land can be assessed by calculating relevant threshold values, which differentiate between concentrations of elements resulting from geogenic and diffuse anthropogenic sources and concentrations generated by point sources of elements. A simple process allowing the calculation of these typical threshold values (TTVs) was applied across a region of highly complex geology (Northern Ireland) to six elements of interest; arsenic, chromium, copper, lead, nickel and vanadium. Three methods for identifying domains (areas where a readily identifiable factor can be shown to control the concentration of an element) were used: k-means cluster analysis, boxplots and empirical cumulative distribution functions (ECDF). The ECDF method was most efficient at determining areas of both elevated and reduced concentrations and was used to identify domains in this investigation. Two statistical methods for calculating normal background concentrations (NBCs) and upper limits of geochemical baseline variation (ULBLs), currently used in conjunction with legislative regimes in the UK and Finland respectively, were applied within each domain. The NBC methodology was constructed to run within a specific legislative framework, and its use on this soil geochemical data set was influenced by the presence of skewed distributions and outliers. In contrast, the ULBL methodology was found to calculate more appropriate TTVs that were generally more conservative than the NBCs. TTVs indicate what a “typical” concentration of an element would be within a defined geographical area and should be considered alongside the risk that each of the elements pose in these areas to determine potential risk to receptors.


Background Contaminated land Domain identification Threshold NBC ULBL 



Alex Donald of the Geological Survey of Northern Ireland (GSNI) is thanked for arranging access to the Tellus data. Many thanks to GSNI for providing their superficial and bedrock geology maps (Crown Copyright), and their information on mineral occurrences (Crown Copyright). The Tellus project was funded by the Department of Enterprise Trade and Investment and by the Rural Development Programme through the Northern Ireland Programme for building sustainable prosperity. This research is supported by the EU INTERREG IVA-funded Tellus Border project. The views and opinions expressed in this research report do not necessarily reflect those of the European Commission or the SEUPB. The authors declare that they have no conflict of interest. The two anonymous reviewers are thanked for their valuable comments.

Supplementary material

10653_2014_9611_MOESM1_ESM.docx (334 kb)
Supplementary material 1 (DOCX 334 kb)


  1. Ajmone-Marsan, F., Biasioli, M., Kralj, T., Grcman, H., Davidson, C. M., Hursthouse, A. S., Madrid, L., & Rodrigues, S. (2008). Metals in particle-size fractions of the soils of five european cities. Environmental Pollution, 152, 73–81. December 19, 2012.
  2. Albanese, S., Cicchella, D., De Vivo, B., Lima, A., Civitillo, D., Cosenza, A., & Grezzi, G. (2011). Advancements in urban geochemical mapping of the Naples metropolitan area: Colour composite maps and results from an urban Brownfield site. In C. C. Johnson, A. Demetriades, J. Locutura, & R. T. Ottesen (Eds.), Mapping the chemical environment of urban areas (pp. 410–424). Oxford: Wiley.Google Scholar
  3. Ander, E. L., Cave, M. R., & Johnson, C. C. (2013b). Normal background concentrations of contaminants in the soils of wales. Exploratory data analysis and statistical methods. British Geological Survey Commissioned Report CR/12/107:144 pp.Google Scholar
  4. Ander, E. L., Cave, M. R., Johnson, C. C., & Palumbo-Roe, B. (2011). Normal background concentrations of contaminants in the soils of England. Available data and data exploration. British Geological Survey Commissioned Report CR/11/145:124 pp.Google Scholar
  5. Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013a). Methodology for the determination of normal background concentrations of contaminants in english soil. The Science of the Total Environment 454–455, 604–618. May 7, 2013.
  6. APAT-ISS. (2006). Protocollo Operativo per La Determinazione Dei Valori Di Fondo Di Metalli/metalloidi Nei Suoli Dei Siti D’interesse Nazionale. Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici and Istituto Superiore di Sanita Revisone 0.Google Scholar
  7. Barrat, J. A., & Nesbitt, R. W. (1996). Geochemistry of the tertiary volcanism of Northern Ireland. Chemical Geology, 129, 15–38.CrossRefGoogle Scholar
  8. Barsby, A., McKinley, J. M., Ofterdinger, U., Young, M., Cave, M. R., & Wragg, J. (2012). Bioaccessibility of trace elements in soils in Northern Ireland. The Science of the Total Environment, 433, 398–417. November 29, 2012.
  9. British Standards. (2011). Soil quality—Guidance on the determination of background values BS EN ISO 19258:2011.Google Scholar
  10. Cave, M. R., Johnson, C. C., Ander, E. L., & Palumbo-Roe, B. (2012). Methodology for the determination of normal background contaminant concentrations in English soils. British Geological Survey Commissioned Report CR/12/003:42 pp.Google Scholar
  11. Chirenje, T., Ma, L. Q., Szulczewski, M., Littell, R., Portier, K. M., & Zillioux, E. (2003). Arsenic distribution in Florida urban soils: Comparison between Gainesville and Miami. Journal of Environmental Quality, 32, 109–119. Scholar
  12. Chirenje, T., Ma, L. Q., Reeves, M., & Szulczewski, M. (2004). Lead distribution in near-surface soils of two Florida cities: Gainesville and Miami. Geoderma, 119, 113–120. February 8, 2012 .
  13. Coggins, A. M., Jennings, S. G., & Ebinghaus, R. (2006). Accumulation rates of the heavy metals lead, mercury and cadmium in ombrotrophic peatlands in the west of Ireland. Atmospheric Environment, 40, 260–278. October 25, 2013.
  14. Communities and Local Government. (2007). Generalised land use database statistics for England 2005. Product code 06CSRG04342.Google Scholar
  15. Cox, S. F., Chelliah, M. C. M., McKinley, J. M., Palmer, S., Ofterdinger, U., Young, M. E., Cave, M. R., & Wragg, J. (2013). The importance of solid-phase distribution on the oral bioaccessibility of Ni and Cr in soils overlying palaeogene basalt lavas, Northern Ireland. Environmental Geochemistry and Health, 35, 553–567. August 24, 2013.
  16. Cruickshank, J. G. (Ed.). (1997). Soil and environment: Northern Ireland (p. 213). Belfast: Agricultural and Environmental Science Division, DANI and The Agricultural and Environmental Science Department, Queen’s University Belfast.Google Scholar
  17. Davies, H., & Walker, S. (2013). Strategic planning policy statement (SPPS) for Northern Ireland: Strategic Environmental Assessment (SEA) Scoping report. Leeds.Google Scholar
  18. Department for Environment Food and Rural Affairs (Defra). (2012). Environmental Protection Act 1990: Part 2A Contaminated Land Statutory Guidance.
  19. Deutsch, C. V., & Journel, A. G. (1998). GSLIB: Geostatistical software library and user’s guide. New York: Oxford University Press.Google Scholar
  20. De Vleeschouwer, F., Gérard, L., Goormaghtigh, C., Mattielli, N., Le Roux, G., & Fagel, N. (2007). Atmospheric lead and heavy metal pollution records from a Belgian peat bog spanning the last two Millenia: Human impact on a regional to global scale. The Science of the Total Environment, 377, 282–295. January 8, 2014.
  21. Díez, M., Simón, M., Dorronsoro, C., García, I., & Martín, F. (2007). Background arsenic concentrations in Southeastern Spanish soils. Science of the Total Environment, 378, 5–12.
  22. ESRI (Environmental Systems Resource Institute). (2009). ArcMap 10.Google Scholar
  23. European Environment Agency. (2012). Corine land cover 2006 seamless vector data. Version 16 (04/2012).
  24. Givelet, N., Le Roux, G., Cheburkin, A., Chen, B., Frank, J., Goodsite, M. E., Kempter, H., Krachler, M., Noernberg, T., Rausch, N., Rheinberger, S., Roos-Barraclough, F., Sapkota, A., Scholz, C., & Shotyk, W. (2004). Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses. Journal of Environmental Monitoring, 6, 481–492.
  25. Goodale, C. L., Aber, J. D., & Ollinger, S. V. (1998). Mapping monthly precipitation, temperature, and solar radiation for Ireland with polynomial regression and a digital elevation model. Climate Research, 10, 35–49.CrossRefGoogle Scholar
  26. Green, K. A., Caven, S., & Lister, T. R. (2010). Tellus soil geochemistry—Quality assessment and map production of ICP data. British Geological Survey Internal Report, IR/11/01:142pp.Google Scholar
  27. Hartigan, J. A., & Wong, A. (1979). A K-means clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1), 100–108.Google Scholar
  28. Hawkes, H. E., & Webb, J. S. (1962). Geochemistry in mineral exploration. New York: Harper & Row Publishers.Google Scholar
  29. Hill, I. G., Worden, R. H., & Meighan, I. G. (2001). Formation of interbasaltic laterite horizons in NE Ireland by early tertiary weathering processes. In Geologists’ association (Vol. 112, pp. 339–348). The Geologists’ Association. September 25, 2013.
  30. Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: A Review. ACM Computing Surveys, 31(3), 264–323.CrossRefGoogle Scholar
  31. Jarva, J., Tarvainen, T., Reinikainen, J., & Eklund, M. (2010). TAPIR—Finnish national geochemical baseline database. Science of the Total Environment, 408, 4385–4395.CrossRefGoogle Scholar
  32. Johnson, C. C., & Ander, E. L. (2008). Urban geochemical mapping studies: How and why we do them. Environmental Geochemistry and Health, 30, 511–530. February 11, 2014.
  33. Joint Nature Conservation Committee. (2011). Towards an assessment of the state of UK Peatlands, JNCC report No. 445.Google Scholar
  34. Jordan, C. (2001). The soil geochemical atlas of Northern Ireland. Belfast: Department of Agriculture and Rural Development (DARD).Google Scholar
  35. Journel, A. G., & Huijbregts, Ch. J. (1978). Mining geostatistics. Orlando: Academic Press.Google Scholar
  36. Kelepertsis, A., Argyraki, A., & Alexakis, D. (2006). Multivariate statistics and spatial interpretation of geochemical data for assessing soil contamination by potentially toxic elements in the mining area of Stratoni, North Greece. Geochemistry: Exploration, Environment, Analysis, 6, 349–355.
  37. Krauskopf, K. B. (1979). In D. C. Jackson (Ed.), Introduction to geochemistry. New York: McGraw-Hill Book Company.Google Scholar
  38. Lloyd, C. D. (2007). Local models for spatial analysis. London: CRC Press.Google Scholar
  39. Locutura, J., & Bel-lan, A. (2011). Systematic Urban Geochemistry of Madrid, Spain, based on soils and dust. In C. C. Johnson, A. Demetriades, J. Locutura, & R. T. Ottesen (Eds.), Mapping the chemical environment of Urban Areas (pp. 307–347). Oxford: Wiley.Google Scholar
  40. Lusty, P. A. J., McDonnell, P. M., Gunn, A. G., Chacksfield, B. C., & Cooper, M. (2009). Gold potential of the dalradian rocks of north-west Northern Ireland: Prospectivity analysis using tellus data. British Geological Survey Internal Report OR/08/39:74 pp.Google Scholar
  41. Lusty, P. A. J., Scheib, C., Gunn, A. G., & Walker, A. S. D. (2012). Reconnaissance-scale prospectivity analysis for gold mineralisation in the Southern uplands-down-longford terrane, Northern Ireland. Natural Resources Research, 21(3), 359–382.CrossRefGoogle Scholar
  42. Martin, I., De Burca, R., & Morgan, H. (2009a). Soil guideline values for inorganic arsenic in soil.–e.pdf.
  43. Martin, I., Morgan, H., Jones, C., Waterfall, E., & Jeffries, J. (2009b). Soil guideline values for nickel in soil.
  44. Matheron, G. (1965). The theory of regionalised variables and their estimation. Paris: Masson.Google Scholar
  45. Matschullat, J., Ottenstein, R., & Reimann, C. (2000). Geochemical background—Can we calculate it? Environmental Geology, 39(9), 990–1000.CrossRefGoogle Scholar
  46. McKinley, J. M., Lloyd, C. D., & Ruffell, A. H. (2004). Use of variography in permeability characterization of visually homogeneous sandstone reservoirs with examples from outcrop studies. Mathematical Geology, 36(7), 761–779.CrossRefGoogle Scholar
  47. Meighan, I. G., Gibson, D., & Hood, D. N. (1984). Some aspects of tertiary acid magmatism in NE Ireland. Mineralogical Magazine, 48, 351–363.CrossRefGoogle Scholar
  48. Mielke, H. W., Alexander, J., Langedal, M., & Ottesen, R. T. (2011). Children, soils and health: How do polluted soils influence children’s health? In C. C. Johnson, A. Demetriades, J. Locutura, & R. T. Ottesen (Eds.), Mapping the chemical environment of urban areas (pp. 134–150). Oxford: Wiley.Google Scholar
  49. Mielke, H. W., & Zahran, S. (2012). The urban rise and fall of air lead (Pb) and the latent surge and retreat of societal violence. Environment International, 43, 48–55. April 17, 2012.
  50. Ministry of the Environment Finland. (2007). Government decree on the assessment of soil contamination and remediation needs (214/2007).Google Scholar
  51. Mitchell, W. I. (Ed.). (2004). The geology of Northern Ireland (2nd ed.). Belfast: Geological Survey of Northern Ireland.Google Scholar
  52. Nathanail, C. P., McCaffrey, C., Ashmore, M. H., Cheng, Y. Y., Gillett, A., Ogden, R., & Scott, D. (2009). The LQM/CIEH generic assessment criteria for human health risk assessment (2nd edn.).Google Scholar
  53. Northern Ireland Statistics & Research Agency. (2013). Population and migration estimates Northern Ireland (2012)—Statistical report.Google Scholar
  54. Novak, M., Zemanova, L., Voldrichova, P., Stepanova, M., Adamova, M., Pacherova, P., Komarek, A., Krachler, M., & Prechova, E. (2011). Experimental evidence for mobility/immobility of metals in peat. Environmental Science & Technology, 45, 7180–7187.
  55. Palmer, S., Ofterdinger, U., McKinley, J. M., Cox, S., & Barsby, A. (2013). Correlation analysis as a tool to investigate the bioaccessibility of Nickel, Vanadium and Zinc in Northern Ireland Soils. Environmental Geochemistry and Health, 35, 569–84. September 6, 2013.
  56. Parnell, J., Earls, G., Wilkinson, J. J., Hutton, D. H. W., Boyce, A. J., Fallick, A. E., Ellam, R. M., Gleeson, S. A., Moles, N. R., Carey, P. F., & Legg, I. (2000). Regional fluid flow and gold mineralisation in the Dalradian of the Sperrin Mountains, Northern Ireland. Economic Geology, 95(7), 1389–1416.Google Scholar
  57. Paterson, E., Towers, W., Bacon, J. R., & Jones, M. (2003). Background levels of contaminants in Scottish soils.Google Scholar
  58. R Core Team. (2013). R: A language and environment for statistical computing.
  59. Ramos-Miras, J. J., Roca-Perez, L., Guzmán-Palomino, M., Boluda, R., & Gil, C. (2011). Background levels and baseline values of available heavy metals in mediterranean greenhouse soils (Spain). Journal of Geochemical Exploration, 110, 186–92. March 26, 2013.
  60. Reimann, C. (2005). Geochemical mapping—Technique or art. Geochemistry: Exploration, Environment, Analysis, 5(4), 359–370.Google Scholar
  61. Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: Critical comparison of methods of determination. The Science of the Total Environment, 346, 1–16. March 12, 2012.
  62. Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical data analysis explained: Applied environmental statistics with R. Chichester: Wiley.CrossRefGoogle Scholar
  63. Reimann, C., & Garrett, R. G. (2005). Geochemical background–concept and reality. The Science of the Total Environment, 350, 12–27. October 19, 2012.
  64. Rodrigues, S., Pereira, M. E., Duarte, A. C., Ajmone-Marsan, F., Davidson, C. M., Grcman, H., Hossack, I., Hursthouse, A. S., Ljung, K., Martini, C., Otabbong, E., Reinoso, R., Ruiz-Cortés, E., Urquhart, G. J., & Vrscaj, B. (2006). Mercury in Urban soils: A comparison of local spatial variability in six European cities. The Science of the Total Environment, 368, 926–936. November 21, 2012,
  65. Rodrigues, S. M., Pereira, M. E., Ferreira da Silva, E., Hursthouse, A. S., Duarte, A. C. (2009). A review of regulatory decisions for environmental protection: Part I—Challenges in the implementation of national soil policies. Environment International, 35, 202–213. March 19, 2013.
  66. Romesburg, H. C. (2004). Cluster analysis for researchers. North Carolina: Lulu Press.Google Scholar
  67. Salminen, R., & Tarvainen, T. (1997). The problem of defining geochemical baselines. A case study of selected elements and geological materials in Finland. Journal of Geochemical Exploration, 60, 91–98.
  68. Shotyk, W. (1996). Peat bog archives of atmospheric metal deposition: Geochemical evaluation of peat profiles, natural variations in metal concentrations, and metal enrichment factors. Environmental Reviews, 4(2), 149–183.CrossRefGoogle Scholar
  69. Sinclair, A. J. (1974). Selection of threshold values in geochemical data using probability graphs. Journal of Geochemical Exploration, 3, 129–149.CrossRefGoogle Scholar
  70. Smith, B. J., & McAlister, J. J. (1995). Mineralogy, chemistry and palaeoenvironmental significance of an early tertiary terra rossa from Northern Ireland : A preliminary review. Geomorphology, 12, 63–73.CrossRefGoogle Scholar
  71. Smyth, D. (2007). Methods used in the tellus geochemical mapping of Northern Ireland. British geological survey open report OR/07/022:90 pp.Google Scholar
  72. Stevenson, C. T. E., & Bennett, N. (2011). The emplacement of the palaeogene mourne granite centres, Northern Ireland: New results from the Western Mourne Centre. Journal of the Geological Society, 168, 831–836. September 30, 2013.
  73. Templ, M., Filzmoser, P., & Reimann, C. (2008). Cluster analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry, 23(8), 2198–2213. October 29, 2012.
  74. Wedepohl, K. H., Correns, C. W., Shaw, D. M., Turekian, K. K., & Zemann, J. (Eds.). (1978). Handbook of geochemistry (II–4th ed.) Berlin: Springer.Google Scholar
  75. Wong, C. S. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16. February 7, 2013.
  76. Young, M. E., & Donald, A. (Eds.). (2014). A guide to the Tellus data. 244p.Google Scholar
  77. Zhang, C., Jordan C., & Higgins, A. (2007). Using neighbourhood statistics and GIS to quantify and visualize spatial variation in geochemical variables: An example using Ni concentrations in the topsoils of Northern Ireland. Geoderma, 137, 466–476. October 19, 2012.

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Rebekka McIlwaine
    • 1
  • Siobhan F. Cox
    • 1
  • Rory Doherty
    • 1
  • Sherry Palmer
    • 1
  • Ulrich Ofterdinger
    • 1
  • Jennifer M. McKinley
    • 2
  1. 1.Environmental Engineering Research Centre, School of Planning, Architecture and Civil EngineeringQueen’s University BelfastBelfastUK
  2. 2.School of Geography, Archaeology and PalaeoecologyQueen’s University BelfastBelfastUK

Personalised recommendations