Skip to main content
Log in

Relative bioavailability of soil-bound chlordecone in growing lambs

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The pollution of soil with the pesticide chlordecone (CLD) is a problem for the use of agricultural surfaces even years after its use has been forbidden. Therefore, the exposure of free-ranged animals such as ruminants needs to be investigated in order to assess the risk of contamination of the food chain. Indeed, measured concentrations could be integrated in a lowered extent if the soil binding would reduce the bioavailability of the pesticide. This bioavailability of soil-bound CLD in a heavily polluted andosol has been investigated relatively of CLD given via spiked oil. Twenty-four weaned lambs were exposed to graded doses of 2, 4 or 6 μg CLD/kg body weight during 15 days via the contaminated soil in comparison to spiked oil. The concentration of this pesticide has been determined in two target tissues: blood serum and kidney fat. The relative bioavailability (RBA) corresponds to the slope ratio between the test matrix-contaminated soil- in comparison to the reference matrix oil. The RBA of the soil-bound CLD was not found to significantly differ from the reference matrix oil in lambs meaning that the pesticide ingested by grazing ruminants would not be sequestered by soil binding. Therefore, CLD from soil gets bioavailable within the intestinal level and exposure to contaminated soil has to be integrated in risk assessments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blanke, R., Fariss, M., Griffith, F., & Guzelian, P. (1977). Analysis of chlordecone [kepone] in biological specimens. Journal of Analytical Toxicology, 1, 57–62.

    Article  CAS  Google Scholar 

  • Bordet, F., Thieffinne, A., Mallet, J., Heraud, F., Blateau, A., & Inthavong, D. (2007). In-house validation for analytical methods and quality control for risk evaluation of chlordecone in food. International Journal of Environmental and Analytical Chemistry, 87, 985–998.

    Article  CAS  Google Scholar 

  • Boucher, O., Simard, M. N., Muckle, G., Rouget, F., Kadhel, P., Bataille, H., et al. (2013). Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants. Neurotoxicology, 35, 162–168.

    Article  CAS  Google Scholar 

  • Bouveret, C., Rychen, G., Lerch, S., Jondreville, C., & Feidt, C. (2013). Relative Bioavailability of tropical volcanic soil-bound chlordecone in Piglets. Journal of Agricultural and Food Chemistry 62. (in press).

  • Bouveret, C., Rychen, G., Lerch, S., Jondreville, C., Feidt, C. (2014). Relative Bioavailability of Tropical Volcanic Soil-bound Chlordecone in Piglets. Journal of Agricultural Food and Chemistry 62, 9269–9274.

    Google Scholar 

  • Budinsky, R. A., Rowlands, J. C., Casteel, S., Fent, G., Cushing, C. A., Newsted, J., et al. (2008). A pilot study of oral bioavailability of dioxins and furans from contaminated soils: Impact of differential hepatic enzyme activity and species differences. Chemosphere, 70, 1774–1786.

    Article  CAS  Google Scholar 

  • Cabidoche, Y.-M., Achard, R., Cattan, P., Clermont-Dauphin, C., Massat, F., & Sansoulet, J. (2009). Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts for current residue. Environmental Pollution, 157, 1697–1705.

    Article  CAS  Google Scholar 

  • Cabidoche, Y. M., & Lesueur-Jannoyer, M. (2012). Contamination of harvested organs in root crops grown on chlordecone-polluted soils. Pedosphere, 22, 562–571.

    Article  CAS  Google Scholar 

  • Casamassima, D., Pizzo, R., Palazzo, M., D’Alessandro, A. G., & Martemucci, G. (2008). Effect of water restriction on productive performance and blood parameters in comisana sheep reared under intensive condition. Small Ruminant Research, 78, 169–175.

    Article  Google Scholar 

  • Dallaire, R., Muckle, G., Rouget, F., Kadhel, P., Bataille, H., Guldner, L., et al. (2012). Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environmental Research, 118, 79–85.

    Article  CAS  Google Scholar 

  • Doreau, M., & Chilliard, Y. (1997). Digestion and metabolism of dietary fat in farm animals. British Journal of Nutrition, 78, S15–S35.

    Article  CAS  Google Scholar 

  • Feidt, C., Ounnas, F., Julien-David, D., Jurjanz, S., Toussaint, H., Jondreville, C., et al. (2013). Relative bioavailability of soil-bound polychlorinated biphenyls in lactating goats. Journal of Dairy Science, 96, 3916–3923.

    Article  CAS  Google Scholar 

  • Feller, C., Albrecht, A., Blanchart, E., Cabidoche, Y. M., Chevallier, T., Hartmann, C., et al. (2001). Soil organic carbon sequestration in tropical areas. General considerations and analysis of some edaphic determinants for Lesser Antilles soils. Nutrient Cycling in Agroecosystems, 61, 19–31.

    Article  Google Scholar 

  • Fournier, A., Feidt, C., Travel, A., Le Bizec, B., Venisseau, A., Marchand, P., et al. (2012). Relative bioavailability to laying hens of indicator polychlorobiphenyls present in soil. Chemosphere, 88, 300–306.

    Article  CAS  Google Scholar 

  • Galan, F., Julien, L., & Duflot, B. (2008). Panorama des filières animales et typologie des sytèmes d’exploitation avec élevage de Guadeloupe. Baie Mahault: Institu d’Elevage.

    Google Scholar 

  • Healy, W. B. (1968). Ingestion of soil by dairy cows. New Zealand Journal of Agricultural Research, 11, 487–499.

    Article  Google Scholar 

  • Jondreville, C., Bouveret, C., Lesueur-Jannoyer, M., Rychen, G., & Feidt, C. (2013). Relative bioavailability of tropical volcanic soil-bound chlordecone in laying hens (Gallus domesticus). Environmental Science and Pollution Research, 20, 292–299.

    Article  CAS  Google Scholar 

  • Jurjanz, S., Feidt, C., Pérez-Prieto, L. A., Ribeiro Filho, H. M. N., Rychen, G., & Delagarde, R. (2012). Soil intake of lactating dairy cows in intensive strip grazing systems. Animal, 6, 1350–1359.

    Article  CAS  Google Scholar 

  • Le Déaut, Y., & Procaccia C. (2009). Impacts de l’utilisation de la chlordécone et des pesticides aux Antilles: Bilan et perspectives d’évolution, Sénat. Rapport n°487, 1–223. http://www.senat.fr/rap/r08-487/r08-4871.pdf.

  • Littell, R. C., Henry, P. R., Lewis, A. J., & Ammerman, C. B. (1997). Estimation of relative bioavailability of nutrients using SAS procedures. Journal of Animal Science, 75, 2672–2683.

    CAS  Google Scholar 

  • Multigner, L., Ndong, J. R., Giusti, A., Romana, M., Delacroix-Maillard, H., Cordier, S., et al. (2010). Chlordecone exposure and risk of prostata cancer. Journal of Clinical Oncology, 28, 3457–3462.

    Article  CAS  Google Scholar 

  • Soine, P. J., Blanke, R. V., & Schwartz, C. C. (1983). Chlordecone metabolism in the pig. Toxicology Letters, 17, 35–41.

    Article  CAS  Google Scholar 

  • Woignier, T., Clostre, F., Macarie, H., & Jannoyer, M. (2012). Chlordecone retention in the fractal structure of volcanic clay. Journal of Hazardous Materials, 241, 224–230.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the French National Chlordecone Plan for the financial support. They thank C. Grandclaudon and P. Hartmeyer from UR Animal et Fonctionnalités des Produits Animaux (Nancy) for technical support during the experiment as well as J.P. Thomé (CART Liège) and the staffs from the LDA56 and LDA26 for the CLD analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jurjanz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jurjanz, S., Jondreville, C., Mahieu, M. et al. Relative bioavailability of soil-bound chlordecone in growing lambs. Environ Geochem Health 36, 911–917 (2014). https://doi.org/10.1007/s10653-014-9608-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9608-5

Keywords

Navigation