Advertisement

Environmental Geochemistry and Health

, Volume 36, Issue 5, pp 911–917 | Cite as

Relative bioavailability of soil-bound chlordecone in growing lambs

  • S. Jurjanz
  • C. Jondreville
  • M. Mahieu
  • A. Fournier
  • H. Archimède
  • G. Rychen
  • C. Feidt
Original Paper

Abstract

The pollution of soil with the pesticide chlordecone (CLD) is a problem for the use of agricultural surfaces even years after its use has been forbidden. Therefore, the exposure of free-ranged animals such as ruminants needs to be investigated in order to assess the risk of contamination of the food chain. Indeed, measured concentrations could be integrated in a lowered extent if the soil binding would reduce the bioavailability of the pesticide. This bioavailability of soil-bound CLD in a heavily polluted andosol has been investigated relatively of CLD given via spiked oil. Twenty-four weaned lambs were exposed to graded doses of 2, 4 or 6 μg CLD/kg body weight during 15 days via the contaminated soil in comparison to spiked oil. The concentration of this pesticide has been determined in two target tissues: blood serum and kidney fat. The relative bioavailability (RBA) corresponds to the slope ratio between the test matrix-contaminated soil- in comparison to the reference matrix oil. The RBA of the soil-bound CLD was not found to significantly differ from the reference matrix oil in lambs meaning that the pesticide ingested by grazing ruminants would not be sequestered by soil binding. Therefore, CLD from soil gets bioavailable within the intestinal level and exposure to contaminated soil has to be integrated in risk assessments.

Keywords

Availability Chlordecone Food safety Ruminants Soil 

Notes

Acknowledgments

The authors are grateful to the French National Chlordecone Plan for the financial support. They thank C. Grandclaudon and P. Hartmeyer from UR Animal et Fonctionnalités des Produits Animaux (Nancy) for technical support during the experiment as well as J.P. Thomé (CART Liège) and the staffs from the LDA56 and LDA26 for the CLD analyses.

References

  1. Blanke, R., Fariss, M., Griffith, F., & Guzelian, P. (1977). Analysis of chlordecone [kepone] in biological specimens. Journal of Analytical Toxicology, 1, 57–62.CrossRefGoogle Scholar
  2. Bordet, F., Thieffinne, A., Mallet, J., Heraud, F., Blateau, A., & Inthavong, D. (2007). In-house validation for analytical methods and quality control for risk evaluation of chlordecone in food. International Journal of Environmental and Analytical Chemistry, 87, 985–998.CrossRefGoogle Scholar
  3. Boucher, O., Simard, M. N., Muckle, G., Rouget, F., Kadhel, P., Bataille, H., et al. (2013). Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants. Neurotoxicology, 35, 162–168.CrossRefGoogle Scholar
  4. Bouveret, C., Rychen, G., Lerch, S., Jondreville, C., & Feidt, C. (2013). Relative Bioavailability of tropical volcanic soil-bound chlordecone in Piglets. Journal of Agricultural and Food Chemistry 62. (in press). Google Scholar
  5. Bouveret, C., Rychen, G., Lerch, S., Jondreville, C., Feidt, C. (2014). Relative Bioavailability of Tropical Volcanic Soil-bound Chlordecone in Piglets. Journal of Agricultural Food and Chemistry 62, 9269–9274.Google Scholar
  6. Budinsky, R. A., Rowlands, J. C., Casteel, S., Fent, G., Cushing, C. A., Newsted, J., et al. (2008). A pilot study of oral bioavailability of dioxins and furans from contaminated soils: Impact of differential hepatic enzyme activity and species differences. Chemosphere, 70, 1774–1786.CrossRefGoogle Scholar
  7. Cabidoche, Y.-M., Achard, R., Cattan, P., Clermont-Dauphin, C., Massat, F., & Sansoulet, J. (2009). Long-term pollution by chlordecone of tropical volcanic soils in the French West Indies: A simple leaching model accounts for current residue. Environmental Pollution, 157, 1697–1705.CrossRefGoogle Scholar
  8. Cabidoche, Y. M., & Lesueur-Jannoyer, M. (2012). Contamination of harvested organs in root crops grown on chlordecone-polluted soils. Pedosphere, 22, 562–571.CrossRefGoogle Scholar
  9. Casamassima, D., Pizzo, R., Palazzo, M., D’Alessandro, A. G., & Martemucci, G. (2008). Effect of water restriction on productive performance and blood parameters in comisana sheep reared under intensive condition. Small Ruminant Research, 78, 169–175.CrossRefGoogle Scholar
  10. Dallaire, R., Muckle, G., Rouget, F., Kadhel, P., Bataille, H., Guldner, L., et al. (2012). Cognitive, visual, and motor development of 7-month-old Guadeloupean infants exposed to chlordecone. Environmental Research, 118, 79–85.CrossRefGoogle Scholar
  11. Doreau, M., & Chilliard, Y. (1997). Digestion and metabolism of dietary fat in farm animals. British Journal of Nutrition, 78, S15–S35.CrossRefGoogle Scholar
  12. Feidt, C., Ounnas, F., Julien-David, D., Jurjanz, S., Toussaint, H., Jondreville, C., et al. (2013). Relative bioavailability of soil-bound polychlorinated biphenyls in lactating goats. Journal of Dairy Science, 96, 3916–3923.CrossRefGoogle Scholar
  13. Feller, C., Albrecht, A., Blanchart, E., Cabidoche, Y. M., Chevallier, T., Hartmann, C., et al. (2001). Soil organic carbon sequestration in tropical areas. General considerations and analysis of some edaphic determinants for Lesser Antilles soils. Nutrient Cycling in Agroecosystems, 61, 19–31.CrossRefGoogle Scholar
  14. Fournier, A., Feidt, C., Travel, A., Le Bizec, B., Venisseau, A., Marchand, P., et al. (2012). Relative bioavailability to laying hens of indicator polychlorobiphenyls present in soil. Chemosphere, 88, 300–306.CrossRefGoogle Scholar
  15. Galan, F., Julien, L., & Duflot, B. (2008). Panorama des filières animales et typologie des sytèmes d’exploitation avec élevage de Guadeloupe. Baie Mahault: Institu d’Elevage.Google Scholar
  16. Healy, W. B. (1968). Ingestion of soil by dairy cows. New Zealand Journal of Agricultural Research, 11, 487–499.CrossRefGoogle Scholar
  17. Jondreville, C., Bouveret, C., Lesueur-Jannoyer, M., Rychen, G., & Feidt, C. (2013). Relative bioavailability of tropical volcanic soil-bound chlordecone in laying hens (Gallus domesticus). Environmental Science and Pollution Research, 20, 292–299.CrossRefGoogle Scholar
  18. Jurjanz, S., Feidt, C., Pérez-Prieto, L. A., Ribeiro Filho, H. M. N., Rychen, G., & Delagarde, R. (2012). Soil intake of lactating dairy cows in intensive strip grazing systems. Animal, 6, 1350–1359.CrossRefGoogle Scholar
  19. Le Déaut, Y., & Procaccia C. (2009). Impacts de l’utilisation de la chlordécone et des pesticides aux Antilles: Bilan et perspectives d’évolution, Sénat. Rapport n°487, 1–223. http://www.senat.fr/rap/r08-487/r08-4871.pdf.
  20. Littell, R. C., Henry, P. R., Lewis, A. J., & Ammerman, C. B. (1997). Estimation of relative bioavailability of nutrients using SAS procedures. Journal of Animal Science, 75, 2672–2683.Google Scholar
  21. Multigner, L., Ndong, J. R., Giusti, A., Romana, M., Delacroix-Maillard, H., Cordier, S., et al. (2010). Chlordecone exposure and risk of prostata cancer. Journal of Clinical Oncology, 28, 3457–3462.CrossRefGoogle Scholar
  22. Soine, P. J., Blanke, R. V., & Schwartz, C. C. (1983). Chlordecone metabolism in the pig. Toxicology Letters, 17, 35–41.CrossRefGoogle Scholar
  23. Woignier, T., Clostre, F., Macarie, H., & Jannoyer, M. (2012). Chlordecone retention in the fractal structure of volcanic clay. Journal of Hazardous Materials, 241, 224–230.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • S. Jurjanz
    • 1
  • C. Jondreville
    • 1
  • M. Mahieu
    • 2
  • A. Fournier
    • 1
  • H. Archimède
    • 2
  • G. Rychen
    • 1
  • C. Feidt
    • 1
  1. 1.UR Animal et Fonctionnalités des Produits Animaux, USC 340Université de Lorraine, INRAVandoeuvre-lès-Nancy CedexFrance
  2. 2.UR143 Recherches ZootechniquesINRAPetit BourgGuadeloupe, France

Personalised recommendations