Skip to main content

Advertisement

Log in

Mineral licks: motivational factors for visitation and accompanying disease risk at communal use sites of elk and deer

  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Free-ranging cervids acquire most of their essential minerals through forage consumption, though occasionally seek other sources to account for seasonal mineral deficiencies. Mineral sources occur as natural geological deposits (i.e., licks) or as anthropogenic mineral supplements. In both scenarios, these sources commonly serve as focal sites for visitation. We monitored 11 licks in Rocky Mountain National Park, north-central Colorado, using trail cameras to quantify daily visitation indices (DVI) and soil consumption indices (SCI) for Rocky Mountain elk (Cervus elaphus) and mule deer (Odocoileus hemionus) during summer 2006 and documented elk, mule deer, and moose (Alces alces) visiting licks. Additionally, soil samples were collected, and mineral concentrations were compared to discern levels that explain rates of visitation. Relationships between response variables; DVI and SCI, and explanatory variables; elevation class, moisture class, period of study, and concentrations of minerals were examined. We found that DVI and SCI were greatest at two wet, low-elevation licks exhibiting relatively high concentrations of manganese and sodium. Because cervids are known to seek Na from soils, we suggest our observed association of Mn with DVI and SCI was a likely consequence of deer and elk seeking supplemental dietary Na. Additionally, highly utilized licks such as these provide an area of concentrated cervid occupation and interaction, thus increasing risk for environmental transmission of infectious pathogens such as chronic wasting disease, which has been shown to be shed in the saliva, urine, and feces of infected cervids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ayotte, J. B., Parker, K. L., Arocena, J. M., & Gillingham, M. P. (2008). Use of natural licks by four species ungulates in northern British Columbia. Journal of Mammalogy, 89(4), 1041–1050.

    Article  Google Scholar 

  • Ayotte, J. B., Parker, K. L., & Gillingham, M. P. (2006). Chemical composition of lick soils: Functions of soil ingestion by four ungulate species. Journal of Mammalogy, 87(5), 878–888.

    Article  Google Scholar 

  • Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York: Springer.

    Google Scholar 

  • Campbell, T. A., & Hewitt, D. G. (2004). Mineral metabolism by white-tailed deer fed diets of guajillo. Southwestern Naturalist, 49(3), 367–375.

    Article  Google Scholar 

  • Case, G. W. (1938). The use of salt in controlling the distribution of game. Journal of Wildlife Management, 2(3), 79–81.

    Article  Google Scholar 

  • Colorado Division of Wildlife. (2010a). 2010 CWD prevalence for deer by DAU. Colorado Division of Wildlife. http://wildlife.state.co.us/SiteCollectionDocuments/DOW/Hunting/BigGame/CWD/PDF/TestResults/CWDDeer2010.pdf. Accessed April 25, 2012.

  • Colorado Division of Wildlife. (2010b). 2010 CWD prevalence for elk by DAU. Colorado Division of Wildlife. http://wildlife.state.co.us/SiteCollectionDocuments/DOW/Hunting/BigGame/CWD/PDF/TestResults/CWDElk2010.pdf. Accessed April 25, 2012.

  • Davies, P., & Brown, D. R. (2009). Manganese enhances prion protein survival in model soils and increases prion infectivity to cells. PLoS One, 4(10), e7518.

    Article  Google Scholar 

  • DeJoia, C., Moreaux, B., O’Connell, K., & Bessen, R. A. (2006). Prion infection of oral and nasal mucosa. Journal of Virology, 80(9), 4546–4556.

    Article  CAS  Google Scholar 

  • Denton, D. A., Blair-West, J. R., McKinley, M. J., & Nelson, J. F. (1986). Physiological analysis of bone appetite (osteophagia). BioEssays, 4(1), 40–42.

    Article  CAS  Google Scholar 

  • Fischer, J. W., & Lavelle, M. J. (2007). Mineral licks: Evaluating their role in disease transmission. ArcNews Online, 30(1).

  • Haley, N. J., Mathiason, C. K., Zabel, M. D., Telling, B. C., & Hoover, E. A. (2009). Detection of sub-clinical CWD infection in conventional test-negative deer long after oral exposure to urine and feces from CWD+ deer. PLoS One, 4(11), e7990.

    Article  Google Scholar 

  • Henshaw, J., & Ayeni, J. (1971). Some aspects of big-game utilization of mineral licks in Yankari Game Preserve, Nigeria. East African Wildlife Journal, 9(1), 73–82.

    Article  Google Scholar 

  • Hsu, P. H. (1989). Aluminum oxides and oxyhydroxides. In J. B. Dixon & S. B. Weed (Eds.), Minerals in soil environments (pp. 331–378). Madison, WI: Soil Science Society of America.

    Google Scholar 

  • Imrie, C. E., Korre, A., & Munoz-Melendez, G. (2009). Spatial correlation between the prevalence of transmissible spongiform diseases and British soil geochemistry. Environmental Geochemistry and Health, 31, 133–145.

    Article  CAS  Google Scholar 

  • Johnson, C. J., Phillips, K. E., Schramm, P. T., McKenzie, D., Aiken, J. M., & Pedersen, J. A. (2006). Prions adhere to soil minerals and remain infectious. PLoS Pathogens, 2(4), e32.

    Article  Google Scholar 

  • Jones, R. L., & Hanson, H. C. (1985). Mineral licks, geophagy, and biogeochemistry of North American ungulates. Ames: Iowa State University.

    Google Scholar 

  • Jones, R. L., & Weeks, H. P. (1985). Ca, Mg, and P in the annual diet of deer in south-central Indiana. Journal of Wildlife Management, 49(1), 129–133.

    Article  CAS  Google Scholar 

  • Kincaid, R. (1988). Macro elements for ruminants. In D. C. Church (Ed.), The ruminant animal: Digestive physiology and nutrition (pp. 326–341). NJ: Englewood Cliffs.

    Google Scholar 

  • Klaus, G., & Schmid, B. (1998). Geophagy at natural licks and mammal ecology: A review. Mammalia, 62(4), 481–497.

    Article  Google Scholar 

  • Larkins, K. F. (1997). Patterns of elk movement and distribution in and adjacent to the eastern boundary of Rocky Mountain National Park (p. 155). M.A. thesis, University of Northern Colorado, Greeley.

  • Leach, S. P., Salman, M. D., & Hamar, D. (2007). Trace elements and prion diseases: A review of the interactions of copper, manganese and zinc with prion protein. Animal Health Research Reviews, 7(1/2), 97–105.

    Google Scholar 

  • Littell, R. C., Milliken, G. A., Stroup, W. W., Wolfinger, R. D., & Schabenberger, O. (2006). SAS for mixed models (2nd ed.). Cary, NC: SAS Institute.

    Google Scholar 

  • Mathiason, C. K., Powers, J. G., Dahmes, S. J., Osborn, D. A., Miller, K. V., Warren, R. J., et al. (2006). Infectious prions in the saliva and blood of deer with chronic wasting disease. Science, 314(5796), 133–136.

    Article  CAS  Google Scholar 

  • McCaughey, S. A., & Tordoff, M. G. (2002). Magnesium appetite in the rat. Appetite, 38(1), 29–38.

    Article  CAS  Google Scholar 

  • Miller, M. W., Williams, E. S., Hobbs, N. T., & Wolfe, L. L. (2004). Environmental sources of prion transmission in mule deer. Emerging Infectious Diseases, 10(6), 1003–1006.

    Article  Google Scholar 

  • National Cooperative Soil Survey. (2013). National cooperative soil characterization database. http://ncsslabdatamart.sc.egov.usda.gov. Accessed April 20, 2013.

  • National Research Council. (2007). Nutrient requirements of small ruminants: Sheep, goats, cervids, and new world camelids. Washington, DC: National Academies Press.

    Google Scholar 

  • Natural Resources Conservation Service. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed.). US Department of Agriculture Handbook No. 436.

  • Natural Resources Conservation Service. (2010). United States Department of Agriculture. Official Soil Series Descriptions. http://soils.usda.gov/technical/classification/osd/index.html. Accessed April 20, 2013.

  • Nichols, T. A., Spraker, T. R., Rigg, T. D., Meyerett-Reid, C., Hoover, C., Michel, B., et al. (2013). Intranasal inoculation of white-tailed deer (Odocoileus virginianus) with lyophilized chronic wasting disease prion particulate complexed to montmorillonite clay. PLos One, 8(5), e62455.

    Google Scholar 

  • Pedersen, J. A., McMahon, K. D., & Benson, C. H. (2006). Prions: Novel pathogens of environmental concern. Journal of Environmental Engineering, 132(967), 967–969.

    Article  CAS  Google Scholar 

  • Provenza, F. D., & Villalba, J. J. (2006). Foraging in domestic herbivores: Linking the internal and external milieux. In V. Bels (Ed.), Feeding in domestic vertebrates: From structure to behaviour. Wallingford, Oxfordshire: CABI Publishing.

    Google Scholar 

  • Pulford, B., Spraker, T. R., Wyckoff, A. C., Meyerett, C., Bender, H., Ferguson, A., et al. (2012). Detection of PrPCWD in feces from naturally exposed Rocky Mountain elk (Cervus elaphus Nelsoni) using protein misfolding cyclic amplification. Journal of Wildlife Diseases, 48(2), 425–434.

    Article  CAS  Google Scholar 

  • Schramm, P. T., Johnson, C. J., Mathews, N. E., McKenzie, D., Aiken, J. M., & Pedersen, J. A. (2006). Potential role of soil in the transmission of prion disease. Reviews in Mineralogy and Geochemistry, 64(1), 135–152.

    Article  CAS  Google Scholar 

  • Schulkin, J. (2001). Calcium hunger: Behavioral and biological regulation. New York: Cambridge University.

    Google Scholar 

  • Schultz, S. R., & Johnson, M. K. (1992). Effects of supplemental mineral licks on white-tailed deer. Wildlife Society Bulletin, 20(3), 303–308.

    Google Scholar 

  • Schwertmann, U., & Taylor, R. M. (1989). Iron oxides. In J. B. Dixon & S. B. Weed (Eds.), Minerals in soil environments (pp. 379–439). Madison, WI: Soil Science Society of America.

    Google Scholar 

  • Sigurdson, C., Williams, E. S., Miller, M. W., Spraker, T. R., O’Rourke, K. I., & Hoover, E. A. (1999). Oral transmission and early lymphoid tropism of chronic wasting disease in mule deer fawns (Odocoileus hemionus). Journal of General Virology, 80(10), 2757–2764.

    Article  CAS  Google Scholar 

  • Spraker, T. R., Miller, M. W., Williams, E. S., Getzy, D. M., Adrian, W. J., Schoonveld, G. G., et al. (1997). Spongiform encephalopathy in free-ranging mule deer (Odocoileus hemionus), white-tailed deer (Odocoileus virginianus), and Rocky Mountain Elk (Cervus elaphus nelsoni) in northcentral Colorado. Journal of Wildlife Diseases, 33(1), 1–6.

    Article  CAS  Google Scholar 

  • Stephenson, J. D., Mills, A., Eksteen, J. J., Milewski, A. V., & Myburgh, J. G. (2011). Geochemistry of mineral licks at Loskop Dam Nature Reserve, Mpumalanga, South Africa. Environmental Geochemistry and Health, 33, 49–53.

    Article  CAS  Google Scholar 

  • Tamgüney, G., Miller, M. W., Wolfe, L. L., Sirochman, T. M., Glidden, D. V., Palmer, C., et al. (2009). Asymptomatic deer excrete infectious prions in faeces. Nature, 461, 529–533.

    Article  Google Scholar 

  • Tordoff, M. G. (2001). Calcium: Taste, intake, and appetite. Physiological Reviews, 81(4), 1567–1597.

    CAS  Google Scholar 

  • van Raij, B. (1998). Bioavailable tests: Alternatives to standard soil extractions. Communications in Soil Science and Plant Analysis, 29(11–14), 1553–1570.

    Article  Google Scholar 

  • VerCauteren, K. C., Burke, P. W., Phillips, G. E., Fischer, J. W., Seward, N. W., Wunder, B. A., et al. (2007). Elk use of wallows: Implications for disease transmission. Journal of Wildlife Diseases, 43(4), 784–788.

    Article  Google Scholar 

  • White, S. N., O’Rourke, K. I., Gidlewski, T., VerCauteren, K. C., Mousel, M. R., Phillips, G. E., et al. (2010). Increased risk of chronic wasting disease in Rocky Mountain elk associated with decreased magnesium and increased manganese in brain tissue. Canadian Journal of Veterinary Research, 74(1), 50–53.

    CAS  Google Scholar 

  • Wolfe, L. L., Conner, M. M., Bedwell, C. L., Lukacs, P. M., & Miller, M. W. (2010). Select tissue mineral concentrations and chronic wasting disease status in mule deer from north-central Colorado. Journal of Wildlife Diseases, 46(3), 1029–1034.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Terry Terrell and Judy Visty of the United States (US), National Park Service for facilitating research and access to Rocky Mountain National Park. Reviews by T. Atwood and S. Leach strengthened the manuscript. All procedures were approved by the US Department of Agriculture (USDA)-Animal and Plant Health Inspection Service-Wildlife Services-National Wildlife Research Center’s (NWRC) Institutional Animal Care and Use Committee (QA-1267). All funding was provided by the NWRC. Mention of companies or commercial products does not imply recommendation or endorsement by the USDA over others not mentioned. USDA neither guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide specific information. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Lavelle.

Appendix

Appendix

Variables (Var) associated with mineral licks, including mineral concentrations (Al–Zn, mg/kg) at licks (L) and reference sites (Ref), elevation of lick (E, m), elevation class (EC), moisture class (MC), daily visitation index (DVI), and soil consumption index (SCI) during study periods 1 (PD1) and 2 (PD2) for Rocky Mountain elk (C. elaphus) and mule deer (O. virginianus) in Rocky Mountain National Park, Colorado, June–September 2006. Period 1 occurred June 29–July 27, 2006, and period 2 occurred August 23–September 16, 2006.

Site

Sample

Al

Ca

Cd

Cu

Cr

Fe

K

Mg

Mn

Na

Ni

A

Lick

244

881

0.255

49.2

0.584

1,046

189

52.3

11.0

199

1.72

Ref

125

867

0.008

5.85

0.589

828

233

112

78.4

246

<0.01

B

Lick

288

714

0.254

40.0

0.939

1,159

442

43.0

9.43

208

1.49

Ref

127

1,008

0.001

10.1

0.355

543

488

127

115

264

<0.01

C

Lick

229

935

0.257

47.1

0.375

1,437

193

91.7

18.4

382

1.35

Ref

61.5

2,130

0.340

5.86

0.171

419

249

231

36.4

260

0.17

D

Lick

106

1,072

0.041

12.4

0.637

504

345

128

41.2

242

0.04

Ref

61.1

1,846

0.113

8.19

0.306

392

322

194

37.6

252

0.18

E

Lick

55.3

1,001

0.108

18.3

0.299

578

110

155

8.23

186

0.86

Ref

83.7

1,419

0.231

9.37

0.152

514

353

150

23.8

276

0.04

F

Lick

41.3

2,066

0.109

18.3

0.255

739

145

223

54.5

443

<0.01

Ref

91.4

1,566

0.035

50.3

0.28

1,056

262

124

81.1

210

0.44

G

Lick

41.1

2,061

0.003

13.1

0.180

577

162

393

84.4

482

0.06

Ref

166

1,024

0.090

11.8

0.39

833

245

139

39.1

269

<0.01

H

Lick

259

510

0.038

11.0

0.245

223

171

89.5

14.0

245

0.05

Ref

58.9

1,219

0.003

11.9

0.26

700

283

183

97.9

164

<0.01

I

Lick

86.3

3,381

0.040

25.8

0.346

1,486

823

347

43.4

377

1.51

Ref

51.7

3,657

0.069

66.3

0.37

2,486

362

685

177

432

1.28

J

Lick

105

915

0.027

18.0

0.662

622

202

97.0

39.0

178

<0.01

Ref

65.0

2,507

0.107

24.1

0.23

519

474

187

84.2

272

0.02

K

Lick

6.29

3,537

0.066

13.9

0.042

90.9

81.8

437

2.78

156

0.78

Ref

108

1,657

0.340

13.5

0.24

584

244

122

46.5

274

0.04

Site

Sample

P

Zn

E

EC

MC

Daily visitation index

Soil consumption index

Elk PD1

Elk PD2

Deer PD1

Deer PD2

Elk PD1

Elk PD2

Deer PD1

Deer PD2

A

Lick

6.30

5.64

3,476

High

Wet

2.448

0.846

0

0

0.552

0.053

0

0

Ref

12.0

3.07

           

B

Lick

6.30

4.40

3,478

High

Wet

2.709

1.582

0

0

0.973

1.16

0

0

Ref

10.2

3.07

           

C

Lick

7.20

9.50

3,415

High

Wet

0.076

0.502

0

0

0.076

0.151

0

0

Ref

12.0

19.5

           

D

Lick

6.30

3.24

3,480

High

Dry

0.28

0.412

0

0

0.14

0.183

0

0

Ref

12.0

7.85

           

E

Lick

8.40

4.68

3,492

High

Wet

0.138

0.204

0

0

0.034

0.122

0

0

Ref

9.30

10.6

           

F

Lick

7.50

2.22

3,123

Low

Wet

0.465

3.418

1.718

1.606

0.143

3.006

1.682

1.936

Ref

12.9

15.5

           

G

Lick

7.50

1.66

3,111

Low

Wet

0.646

7.27

1.342

1.72

0.845

8.99

2.038

2.502

Ref

12.0

4.07

           

H

Lick

12.0

1.60

3,093

Low

Dry

0

1.529

0.095

0

0

0.127

0

0

Ref

16.8

6.31

           

I

Lick

7.20

6.59

3,026

Low

Dry

0

1.133

0.074

0

0

0.496

0

0

Ref

24.8

29.3

           

J

Lick

7.50

1.28

3,524

High

Dry

1.004

1.234

0

0

0.521

0.617

0

0

Ref

8.4

14.8

           

K

Lick

7.50

4.77

3,522

High

Dry

0.261

0

0

0

0.149

0.207

0

0

Ref

10.1

18.9

           

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavelle, M.J., Phillips, G.E., Fischer, J.W. et al. Mineral licks: motivational factors for visitation and accompanying disease risk at communal use sites of elk and deer. Environ Geochem Health 36, 1049–1061 (2014). https://doi.org/10.1007/s10653-014-9600-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-014-9600-0

Keywords

Navigation