Environmental Geochemistry and Health

, Volume 36, Issue 4, pp 815–828 | Cite as

An innovative approach for iodine supplementation using iodine-rich phytogenic food

  • Huan-Xin Weng
  • Hui-Ping Liu
  • De-Wang Li
  • Mingli Ye
  • Lehua Pan
  • Tian-Hong Xia


Iodine, as one of the essential trace elements for human body, is very important for the proper function of thyroid gland. In some regions, people are still suffering from iodine deficiency disorder (IDD). How to provide an effective and cost-efficient iodine supplementation has been a public health issue for many countries. In this review, a novel iodine supplementation approach is introduced. Different from traditional iodine salt supplement, this approach innovatively uses cultivated iodine-rich phytogenic food as the supplement. These foods are cultivated using alga-based organic iodine fertilizer. The feasibility, mechanics of iodine absorption of plants from soil and the bioavailability of iodine-rich phytogenic food are further discussed.


Iodine deficiency disease (IDD) Algae fertilizer Iodine supplementation Iodine fortification 



This work was supported by the National Science Foundation of China (40873058 and 40373043).


  1. Amachi, S., Kasahara, M., Hanada, S., Kamagata, Y., Shinoyama, H., Fujii, T., et al. (2003). Microbial participation in iodine volatilization from soils. Environmental Science Technology, 37(17), 3885–3890.CrossRefGoogle Scholar
  2. Andersson, M., de Benoist, B., Darnton-Hill, I., & Delange, F. (2007). Iodine deficiency in Europe: A continuing public health problem. France, Geneva: World Health Organization.Google Scholar
  3. Andersson, M., Karumbunathan, V., & Zimmermann, M. B. (2012). Global iodine status in 2011 and trends over the past decade. Journal of Nutrition, 142(4), 744–750. doi: 10.3945/jn.111.149393.CrossRefGoogle Scholar
  4. Aquaron, R., Delange, F., Marchal, P., Lognon E, V., & Ninane, L. (2002). Bioavailability of seaweed iodine in human beings. Cellular and Molecular Biology (Noisy-le-Grand, France), 48(5), 563–569.Google Scholar
  5. Biber, F. Z., Unak, P., & Yurt, F. (2002). Stability of iodine content in iodized salt. Isotopes Environ Health Stud, 38(2), 87–93. doi: 10.1080/10256010208033316.CrossRefGoogle Scholar
  6. Bostock, A. C., Shaw, G., & Bell, J. N. (2003). The volatilisation and sorption of 129I in coniferous forest, grassland and frozen soils. Journal of Environmental Radioactivity, 70(1–2), 29–42. doi: 10.1016/S0265-931X(03)00120-6.CrossRefGoogle Scholar
  7. Chi, Y. S. (2002). The evaluation of organic iodine in kelp supplementing iodine on animal. Journal of Chinese Institute of Food Science and Technology, 2(3), 37–42.Google Scholar
  8. Dai, J. L., Zhu, Y. G., Huang, Y. Z., Zhang, M., & Song, J. L. (2006). Availability of iodide and iodate to spinach (Spinacia oleracea L.) in relation to total iodine in soil solution. Plant and Soil, 289(1–2), 301–308.CrossRefGoogle Scholar
  9. de Benoist, B., Andersson, M., Egli, I. M., El Bahi, T., & Allen, H. (2004). Iodine status worldwide: WHO global database on iodine deficiency. France, Geneva: World Health Organization.Google Scholar
  10. de Benoist, B., McLean, E., Andersson, M., & Rogers, L. (2008). Iodine deficiency in 2007: Global progress since 2003. Food and Nutrition Bulletin, 29(3), 195–202.Google Scholar
  11. DeLong, G. R., Leslie, P. W., Wang, S. H., Jiang, X. M., Zhang, M. L., Rakeman, M., et al. (1997). Effect on infant mortality of iodination of irrigation water in a severely iodine-deficient area of China. Lancet, 350(9080), 771–773.CrossRefGoogle Scholar
  12. Fairweather-Tait, S. J. (1992). Bioavailability of trace elements. Food Chemistry, 43(3), 213–217. doi: 10.1016/0308-8146(92)90176-3.CrossRefGoogle Scholar
  13. Feldt-Rasmussen, U. (2001). Iodine and cancer. Thyroid, 11(5), 483–486.CrossRefGoogle Scholar
  14. Gerber, H., Peter, H. J., Burgi, E., Bigler, S., Kaempf, J., & Zbaeren, J. (1999). Colloidal aggregates of insoluble inclusions in human goiters. Biochimie, 81(5), 441–445.CrossRefGoogle Scholar
  15. Gu, J., Sun, P., & Zhuang, G. D. (2003). Study on the chronic accumulating of biological organic iodine in kelp. Food Research and Development, 24(4), 48–49.Google Scholar
  16. Hetzel, B. S. (2005). Towards the global elimination of brain damage due to iodine deficiency—The role of the International Council for Control of Iodine Deficiency Disorders. International Journal of Epidemiology, 34(4), 762–764. doi: 10.1093/ije/dyi073.CrossRefGoogle Scholar
  17. Hong, C. L., Weng, H. X., Qin, Y. C., Yan, A. L., & Xie, L. L. (2008a). Transfer of iodine from soil to vegetables by applying exogenous iodine. Agronomy for Sustainable Development, 28(4), 575–583. doi: 10.1051/agro:2008033.CrossRefGoogle Scholar
  18. Hong, C. L., Weng, H. X., Yan, A. L., & Islam, E. U. (2009a). The fate of exogenous iodine in pot soil cultivated with vegetables. Environmental Geochemistry and Health, 31(1), 99–108. doi: 10.1007/s10653-008-9169-6.CrossRefGoogle Scholar
  19. Hong, C. L., Weng, H. X., Yan, A. L., & Xie, L. L. (2007). Characteristics of iodine uptake and accumulation by vegetables. Chinese Journal of Applied Ecology, 18(10), 2313–2318.Google Scholar
  20. Hong, C. L., Weng, H. X., Yan, A. L., & Xie, L. L. (2008b). Study on characteristics of iodine absorption and accumulation of vegetable soybean. Chinese journal of oil crop sciences, 30(1), 95–99.Google Scholar
  21. Hong, C. L., Weng, H. X., Yan, A. L., & Xie, L. L. (2009b). Dynamic characterization of iodine uptake in vegetable plants. Acta Ecologica Sinica, 29(3), 1438–1447.Google Scholar
  22. Horton, S., & Miloff, A. (2010). Iodine status and availability of iodized salt: an across-country analysis. Food and Nutrition Bulletin, 31(2), 214–220.Google Scholar
  23. Hou, X. L., Chai, C. F., Qian, Q. F., Yan, X. J., & Fan, X. (1997). Determination of chemical species of iodine in some seaweeds (I). Science of the Total Environment, 204(3), 215–221.CrossRefGoogle Scholar
  24. Katamine, S., Mamiya, Y., Sekimoto, K., Hoshino, N., Totsuka, K., & Suzuki, M. (1987). Differences in bioavailability of iodine among iodine-rich foods and food colors. Nutrition Reports International, 35(2), 289–297.Google Scholar
  25. Korobova, E. (2010). Soil and landscape geochemical factors which contribute to iodine spatial distribution in the main environmental components and food chain in the central Russian plain. Journal of Geochemical Exploration, 107(2), 180–192.CrossRefGoogle Scholar
  26. Liu, X. H., Liu, Q. Y., Kuang, Y. H., Chai, H., & Yu, H. H. (1998). The leaching and moving of 125I in subtroptics soils of south China. Acta Agriculturae Nucleatae Sinica, 12(3), 44–47.Google Scholar
  27. Longvah, T., Toteja, G. S., Bulliyya, G., Raghuvanshi, R. S., Jain, S., Rao, V., et al. (2012). Stability of added iodine in different Indian cooking processes. Food Chemistry, 130(4), 953–959.CrossRefGoogle Scholar
  28. Mackowiak, C. L., & Grossl, P. R. (1999). Iodate and iodide effects on iodine uptake and partitioning in rice (Oryza sativa L.) grown in solution culture. Plant and Soil, 212(2), 135–143.CrossRefGoogle Scholar
  29. Melse-Boonstra, A., & Jaiswal, N. (2010). Iodine deficiency in pregnancy, infancy and childhood and its consequences for brain development. Best Practice and Research Clinical Endocrinology and Metabolism, 24(1), 29–38. doi: 10.1016/j.beem.2009.09.002.CrossRefGoogle Scholar
  30. Mišurcová, L., Machů, L., & Orsavová, J. (2011). Seaweed minerals as nutraceuticals. Advances in Food and Nutrition Research, 64, 371–390. doi: 10.1016/B978-0-12-387669-0.00029-6.CrossRefGoogle Scholar
  31. Muramatsu, Y., & Yoshida, S. (1995). Volatilization of methyl iodide from the soil-plant system. Atmospheric Environment, 29(1), 21–25.CrossRefGoogle Scholar
  32. Redjala, T., Sterckeman, T., & Morel, J. L. (2009). Cadmium uptake by roots: Contribution of apoplast and of high- and low-affinity membrane transport systems. Environmental and Experimental Botany, 67(1), 235–242. doi: 10.1016/j.envexpbot.2009.05.012.CrossRefGoogle Scholar
  33. Ren, Q., Fan, J., Zhang, Z., Zheng, X., & DeLong, G. R. (2008). An environmental approach to correcting iodine deficiency: Supplementing iodine in soil by iodination of irrigation water in remote areas. Journal of Trace Elements in Medicine and Biology, 22(1), 1–8.CrossRefGoogle Scholar
  34. Romarís Hortas, V., García-Sartal, C., Barciela-Alonso, M. D. C., Domínguez-González, R., Moreda-Piñeiro, A., & Bermejo-Barrera, P. (2011). Bioavailability study using an in vitro method of iodine and bromine in edible seaweed. Food Chemistry, 124(4), 1747–1752. doi: 10.1016/j.foodchem.2010.07.117.CrossRefGoogle Scholar
  35. Romaris-Hortas, V., Bermejo-Barrera, P., Moreda-Pineiro, J., & Moreda-Pineiro, A. (2012). Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hyphenated with inductively coupled plasma-mass spectrometry. Analytica Chimica Acta, 745, 24–32. doi: 10.1016/j.aca.2012.07.035.CrossRefGoogle Scholar
  36. Rose, N. R., Bonita, R., & Burek, C. L. (2002). Iodine: an environmental trigger of thyroiditis. Autoimmunity Reviews, 1(1–2), 97–103.CrossRefGoogle Scholar
  37. Sheppard, M. I., & Hawkins, J. L. (1995). Iodine and microbial interactions in an organic soil. Journal of Environmental Radioactivity, 29(2), 91–109.CrossRefGoogle Scholar
  38. Shetaya, W. H., Young, S. D., Watts, M. J., Ander, E. L., & Bailey, E. H. (2012). Iodine dynamics in soils. Geochimica et Cosmochimica Acta, 77, 457–473.CrossRefGoogle Scholar
  39. Shinonaga, T., Gerzabek, M. H., Strebl, F., & Muramatsu, Y. (2001). Transfer of iodine from soil to cereal grains in agricultural areas of Austria. Science of the Total Environment, 267(1–3), 33–40.CrossRefGoogle Scholar
  40. Sooch, S. S., Deo, M. G., Karmarkar, M. G., Kochupillai, N., Ramachandran, K., & Ramalingaswami, V. (2001). Prevention of endemic goitre with iodized salt. National Medical Journal of India, 14(3), 185–188.Google Scholar
  41. Teas, J., Pino, S., Critchley, A., & Braverman, L. E. (2004). Variability of iodine content in common commercially available edible seaweeds. Thyroid, 14(10), 836–841.CrossRefGoogle Scholar
  42. Tsukada, H., Takeda, A., Tagami, K., & Uchida, S. (2008). Uptake and distribution of iodine in rice plants. Journal of Environmental Quality, 37(6), 2243–2247.CrossRefGoogle Scholar
  43. UUSG. (2008). USGS minerals information—Diatomite statistics and information.
  44. Vejbjerg, P., Knudsen, N., Perrild, H., Carle, A., Laurberg, P., Pedersen, I. B., et al. (2007). Effect of a mandatory iodization program on thyroid gland volume based on individuals’ age, gender, and preceding severity of dietary iodine deficiency: A prospective, population-based study. Journal of Clinical Endocrinology and Metabolism, 92(4), 1397–1401. doi: 10.1210/jc.2006-2580.CrossRefGoogle Scholar
  45. Waszkowiak, K., & Szymandera-Buszka, K. (2008). Effect of storage conditions on potassium iodide stability in iodised table salt and collagen preparations. International Journal of Food Science & Technology, 43(5), 895–899.CrossRefGoogle Scholar
  46. Welch, R. M., & Graham, R. D. (2005). Agriculture: The real nexus for enhancing bioavailable micronutrients in food crops. Journal of Trace Elements in Medicine and Biology, 18(4), 299–307. doi: 10.1016/j.jtemb.2005.03.001.CrossRefGoogle Scholar
  47. Weng, H. X., Hong, C. L., Xia, T. H., Bao, L. T., Liu, H. P., & Li, D. W. (2013a). Iodine biofortification of vegetable plants—An innovative method for iodine supplementation. Chinese Science Bulletin,. doi: 10.1007/s11434-013-5709-2.Google Scholar
  48. Weng, H. X., Hong, C. L., & Yan, A. L. (2013b). Biogeochemical transport of iodine and its quantitative model,. doi: 10.1007/s11430-013-4594-5.Google Scholar
  49. Weng, H. X., Weng, J. K., Yan, A. L., Hong, C. L., Yong, W. B., & Qin, Y. C. (2008a). Increment of iodine content in vegetable plants by applying iodized fertilizer and the residual characteristics of iodine in soil. Biological Trace Element Research, 123(1–3), 218–228. doi: 10.1007/s12011-008-8094-y.CrossRefGoogle Scholar
  50. Weng, H. X., Weng, J. K., Yong, W. B., Sun, X. W., & Zhong, H. (2003). Capacity and degree of iodine absorbed and enriched by vegetable from soil. Journal of Environmental Science (China), 15(1), 107–111.Google Scholar
  51. Weng, H. X., Yan, A. L., Hong, C. L., Qin, Y. C., Pan, L., & Xie, L. L. (2009). Biogeochemical transfer and dynamics of iodine in a soil-plant system. Environmental Geochemistry and Health, 31(3), 401–411. doi: 10.1007/s10653-008-9193-6.CrossRefGoogle Scholar
  52. Weng, H. X., Yan, A. L., Hong, C. L., Xia, T. H., & Liu, H. P. (2012). The absorption of iodide and iodate by celery and their bioavailability. Geochimica (Beijing), 41(4), 393–400.Google Scholar
  53. Weng, H. X., Yan, A. L., Hong, C. L., Xie, L. L., Qin, Y. C., & Cheng, C. Q. (2008b). Uptake of different species of iodine by water spinach and its effect to growth. Biological Trace Element Research, 124(2), 184–194. doi: 10.1007/s12011-008-8137-4.CrossRefGoogle Scholar
  54. Whitehead, D. C. (1981). The volatilisation, from soils and mixtures of soil components, of iodine as potassium iodide. Journal of Soil Science, 32(1), 97–102.CrossRefGoogle Scholar
  55. WHO, ICCIDD, & UNICEF. (1999). Progress towards the elimination of iodine deficiency disorders. India, New Delhi: WHO publication.Google Scholar
  56. Wu, J., Yang, Y. S., & Lin, J. (2005). Advanced tertiary treatment of municipal wastewater using raw and modified diatomite. Journal of Hazardous Materials, 127(1–3), 196–203. doi: 10.1016/j.jhazmat.2005.07.016.CrossRefGoogle Scholar
  57. Yu, W. J., Yao, Y., Wei, H. M., Long, M. H., & Tang, X. F. (2011). Absorption of exogenous iodine in rhizosphere and its effects on physiological parameters of cherry tomato plants. Guihaia, 4, 20.Google Scholar
  58. Zahidi, A., Hababa, L., Idrissi, M. O., & Taoufik, J. (1999). Use of iodized salt and the risk of iodine overload. Therapie, 54(5), 549–552.Google Scholar
  59. Zheng, B. S., Wang, B. B., Zhu, G. W., & Yu, X. Y. (2001). Environmental Geochemistry of iodine in atmosphere and plant—review and a hypothesis. Earth Science Frontiers, 8(2), 359–365.Google Scholar
  60. Zhu, Y. G., Huang, Y. Z., Hu, Y., & Liu, Y. X. (2003). Iodine uptake by spinach (Spinacia oleracea L.) plants grown in solution culture: Effects of iodine species and solution concentrations. Environment International, 29(1), 33–37. doi: 10.1016/S0160-4120(02)00129-0.CrossRefGoogle Scholar
  61. Zhuang, G. D., Gu, J., & Chi, Y. S. (2003). Study on the toxicology of biological organic iodine in kelp. Science and Technology of Food Industry, 24(12), 87–88.Google Scholar
  62. Zimmermann, M. B. (2008). Iodine requirements and the risks and benefits of correcting iodine deficiency in populations. Journal of Trace Elements in Medicine and Biology, 22(2), 81–92. doi: 10.1016/j.jtemb.2008.03.001.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Huan-Xin Weng
    • 1
  • Hui-Ping Liu
    • 1
  • De-Wang Li
    • 1
  • Mingli Ye
    • 2
  • Lehua Pan
    • 3
  • Tian-Hong Xia
    • 1
  1. 1.Institute of Environment and BiogeochemistryZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.The Jack H. Skirball Center for Chemical Biology and ProteomicsThe Salk Institute of Biological StudiesLa JollaUSA
  3. 3.Lawrence Berkeley National LaboratoryBerkeleyUSA

Personalised recommendations