Environmental Geochemistry and Health

, Volume 36, Issue 3, pp 467–476 | Cite as

Threat of heavy metal contamination in eight mangrove plants from the Futian mangrove forest, China

Original Paper


Mangrove plants play an important role in heavy metal maintenance in a mangrove ecosystem. To evaluate the characteristics of heavy metal contamination in the Futian mangrove forest, Shenzhen, China, eight heavy metals in mangrove sediments and plants were monitored, including essential elements such as Cu and Zn, and non-essential elements such as Cr, Ni, As, Cd, Pb and Hg. The results showed that the heavy metals exhibited the following scheme: Zn > As > Cu ≈ Cr > Pb > Ni > Cd ≈ Hg in sediment cores, among which Cd, As, Pb and Hg contents were nearly ten times higher than the background values. There was no significant difference in metal maintenance capability between native and exotic species. In mangrove plants’ leaves and stems, concentrations of Cu, Zn and As were higher than other heavy metals. The low bioconcentration factors for most heavy metals, except for Cr, implied the limited ability of heavy metal accumulation by the plants. Mangrove plants seem to develop some degree of tolerance to Cr. The factor analysis implies that anthropogenic influences have altered metal mobility and bioavailability.


Mangroves Heavy metals Bioaccumulation Sediments 



The authors are grateful to Peking University Shenzhen Graduate School and the Futian Mangrove Forest Nature Reserve.


  1. Agoramoorthy, G., Chen, F. A., & Hsu, M. J. (2008). Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu, India. Environmental Pollution, 155, 320–326.CrossRefGoogle Scholar
  2. Allen, S. E. (1989). Chemical analysis of ecological material (2nd ed., p. 368). Oxford: Blackwell Scientific Publications.Google Scholar
  3. Alongi, D. M., Wattayakorn, G., Boyle, S., Tirendi, F., Payn, C., & Dixon, P. (2004). Influence of roots and climate on mineral and trace element storage and flux in tropical mangrove soils. Biogeochemistry, 69, 105–123.CrossRefGoogle Scholar
  4. Asa, S. C., Rath, P., Panda, U. C., Parhi, P. K., & Bramha, S. (2012). Application of sequential leaching, risk indices and multivariate statistics to evaluate heavy metal contamination of estuarine sediments: Dhamara Estuary, East Coast of India. Environmental Monitoring Assessment,. doi: 10.1007/s10661-013-3060-3.Google Scholar
  5. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements–a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.Google Scholar
  6. Bargagli, R. (1998). Trace elements in terrestrial plants. An ecophysiological approach to biomonitoring and biorecovery (p. 324). Berlin: Springer.Google Scholar
  7. Bonanno, G., & Giudice, L. R. (2010). Heavy metal bioaccumulation by the organs of Phragmites australis (common) and their potential use as contamination indicators. Ecological Indicators, 10, 639–645.CrossRefGoogle Scholar
  8. Chaney, R. L. (1989). Toxic element accumulation in soils and crops: Protecting soil fertility and agricultural food chains. In B. Bar-Yosef, N. J. Barrow, & J. Goldshmid (Eds.), Inorganic contaminants in the Vadose zone (pp. 140–158). Berlin: Springer.CrossRefGoogle Scholar
  9. Chatterjee, M., Massolo, S., Sarkar, S. K., Bhattacharya, A. K., Bhattacharya, B. D., Satpathy, K. K., et al. (2009). An assessment of trace element contamination in intertidal sediment cores of Sunderban mangrove wetland, India for evaluating sediment quality guidelines. Environmental Monitoring and Assessment, 150, 307–322.CrossRefGoogle Scholar
  10. Cox, R. M., & Hutchinson, T. C. (1981). Multiple and cotolerance to metals in the grass Despitosa Beauv from the sudbury smelting area. Journal of Plant Nutrition, 3, 731–741.CrossRefGoogle Scholar
  11. Cuong, D. T., Bayen, S., Wurl, O., Subramanian, K., Wong, K. K. S., & Sivasothi, N. (2005). Heavy metal contamination in mangrove habitats of Singapore. Marine Pollution Bulletin, 50, 1713–1738.CrossRefGoogle Scholar
  12. Dahmani-Muller, H., van Oort, F., Gélie, B., & Balabane, M. (2000). Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 109, 231–238.CrossRefGoogle Scholar
  13. Ding, Z. H., Liu, J. L., Li, L. Q., Lin, H. N., Wu, H., & Hu, Z. Z. (2009). Distribution and speciation of mercury in surficial sediments from main mangrove wetlands in China. Marine Pollution Bulletin, 58, 1319–1325.CrossRefGoogle Scholar
  14. Ding, Z. H., Tang, Q. H., Liu, C. E., Wang, W. H., Zhuang, M., & Lin, Y. M. (2007). Distribution and ecological effect of mercury in Laogang landfill, Shanghai, China. Journal of Environment Sciences, 19, 200–204.CrossRefGoogle Scholar
  15. Ding, Z. H., Wu, H., Feng, X. B., Liu, J. L., Liu, Y., Yuan, Y. T., et al. (2010). Distribution of Hg in mangrove trees and its implication for Hg enrichment in the mangrove ecosystem. Applied Geochemistry, 26, 205–212.CrossRefGoogle Scholar
  16. Du, L. G., Bogaert, N., Tack, F. M. G., Verloo, M. G., & Hendrickx, F. (2002). Heavy metal contents (Cd, Cu, Zn) in spiders (Pirata piraticus) living in intertidal sediments of the river Scheldt estuary (Belgium) as affected by substrate characteristics. Science of the Total Environment, 289, 71–81.CrossRefGoogle Scholar
  17. Essien, J. P., Antai, S. P., & Olajire, A. A. (2009). Distribution, seasonal variations and ecotoxicological significance of heavy metals in sediments of Cross River Estuary mangrove swamp. Water, Air, and Soil pollution, 197, 91–105.CrossRefGoogle Scholar
  18. Fang, Y., Zheng, W. J., Wan, Y. J., Chen, C. X., & Sheng, H. X. (2008). Effects of chromium (Cr) on the seedling growth of mangrove species Avicennia marina. Chinese Journal of Ecology, 27(3), 429–443.Google Scholar
  19. Ferrara, R., Maserti, B. E., & Breder, R. (1991). Mercury in abiotic and biotic compartments of an area affected by a geochemical anomaly (Mt Amiata Italy). Water, Air, and Soil pollution, 56, 219–233.CrossRefGoogle Scholar
  20. Gao, S., Luo, T. C., Zhang, B. R., Zhang, H. F., Han, Y. W., Zhao, Z. D., et al. (1998). Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta, 62, 1959–1975.CrossRefGoogle Scholar
  21. Gu, W., Shi, G. X., Zhang, C. Y., Wang, W., Xu, Q. S., Xu, N., et al. (2002). Toxic Effects of Hg2+, Cd2+ and Cu2+ on photosynthetic systems and protective enzyme systems of Potamogeton crispus. Journal of Plant Physiology and Molecular Biology, 28(1), 69–74.Google Scholar
  22. Guentzela, J. L., Landing, W. M., Gill, G. A., & Pollman, C. D. (1998). Mercury and major ions in rainfall, through fall, and foliage from the Florida Everglades. Science of the Total Environment, 213, 43–51.CrossRefGoogle Scholar
  23. Guo, X. Y. (2009). Effect of Zn-Cd combined stress on the growth and osmotic adjustment substances in Kandelia candel (L.) Druce seedlings. Xiamen: Xiamen University.Google Scholar
  24. Kabata-Pendias, A., & Pendias, H. (1993). Biogeochemia pierwiastków śladowych (Biogeochemistry of Trace Element). Warszawa: PWN.Google Scholar
  25. Kehrig, H. A., Pinto, F. N., Moreira, I., & Malm, O. (2003). Heavy metal and methylmercury in a tropical coastal estuary and a mangrove in Brazil. Organic Geochemistry, 34, 661–669.CrossRefGoogle Scholar
  26. Lewis, M., Pryor, R., & Wilking, L. (2011). Fate and effects of anthropogenic chemicals in mangrove ecosystems: A review. Environmental Pollution, 159, 2328–2346.CrossRefGoogle Scholar
  27. Li, M. S., & Lee, S. Y. (1997). Mangroves of China: A brief review. Forest Ecology Management, 96, 241–259.CrossRefGoogle Scholar
  28. Li, Y. Y., & Lin, P. (2006). A review on ecological anatomy research of mangrove in China. Marine Sciences, 30, 69–73. (in Chinese with English abstract).Google Scholar
  29. Lin, P., Zheng, W. J., & Li, Z. J. (1997). Distribution and accumulation of heavy metals in Avicennia marina community in Shenzhen, China. Journal of Environmental Sciences, 9, 472–479.Google Scholar
  30. Louis, V. L. S., Rudd, J. W. M., Kelly, C. A., Beaty, K. G., Flett, R. J., & Roulet, N. T. (1996). Production and loss of methylmercury and loss of total mercury from boreal forest catchments containing different types of wetlands. Environmental Science and Technology, 30, 2719–2729.CrossRefGoogle Scholar
  31. MacFarlane, G. R. (2002). Leaf biochemical parameters in Avicennia marina (Forsk.) Vierh as potential biomarkers of heavy metal stress in estuarine ecosystems. Marine Pollution Bulletin, 44, 244–256.CrossRefGoogle Scholar
  32. MacFarlane, G. R., Koller, C. E., & Blomberg, S. P. (2007). Accumulation and partitioning of heavy metals in mangroves: A synthesis of field-based studies. Chemosphere, 69, 1454–1464.CrossRefGoogle Scholar
  33. Mountouris, A., Voutsas, E., & Tassios, D. (2002). Bioconcentration of heavy metals in aquatic environments: The importance of bioavailability. Marine Pollution Bulletin, 44, 1136–1141.CrossRefGoogle Scholar
  34. Nazli, M. F., & Hashim, N. R. (2010). Heavy metal concentrations in an important mangrove species, Sonneratia caseolaris in Peninsular Malaysia. Environment Asia, 3, 50–55.Google Scholar
  35. Nobi, E. P., Dilipan, E., Thangaradjou, T., Silvakumar, K., & Kannan, L. (2010). Geochemical and geo-statistical assessment of heavy metal concentration in the sediments of different coastal ecosystems of Andaman Islands, India. Estuarine, Coastal and Shelf Science, 87, 253–264.CrossRefGoogle Scholar
  36. Ong Che, R. G. (1999). Concentration of 7 heavy metals in sediments and mangrove root samples from Mai Po, Hong Kong. Marine Pollution Bulletin, 39, 269–279.CrossRefGoogle Scholar
  37. Parvaresh, H., Abedi, Z., Farshchi, P., Karami, M., Khorasani, N., & Karbassi, A. (2011). Bioavailability and concentration of heavy metals in the sediments and leaves of grey mangrove, Avicennia marina (Forsk.) Vierh, in Sirik Azini creek, Iran. Biological Trace Element Research, 143, 1121–1130.CrossRefGoogle Scholar
  38. Qiu, Y. W., Yu, K. F., Zhang, G., & Wang, W. X. (2011). Accumulation and partitioning of seven trace metals in mangroves and sediment cores from three estuarine wetlands of Hainan Island, China. Journal of Hazardous Materials, 190, 631–638.CrossRefGoogle Scholar
  39. Rönnbäck, P., Troell, M., Kautsky, N., & Primavera, J. H. (1999). Distribution pattern of shrimps and fish among Avicennia and Rhizophora microhabitats in the Pagbilao mangroves, Philippines. Estuarine, Coastal and Shelf Science, 48, 223–234.CrossRefGoogle Scholar
  40. Sekomo, C. B., Nkuranga, E., Rousseau, D. P. L., & Lens, P. N. L. (2011). Fate of heavy metals in an urban natural wetland: The Nyabugogo Swamp (Rwanda). Water, Air, and Soil pollution, 214, 321–333.CrossRefGoogle Scholar
  41. Tam, N. F. Y., & Wong, Y. S. (2000). Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environmental Pollution, 110, 195–205.CrossRefGoogle Scholar
  42. Vane, C. H., Harrison, I., Kim, A. W., Moss-Hayes, V., Vickers, B. P., & Hong, K. (2009). Organic and metal contamination in surface mangrove sediments of South China. Marine Pollution Bulletin, 58, 134–144.CrossRefGoogle Scholar
  43. Wang, Y. J., & Lin, P. (1998). Annual dynamics of water birds at Futian mangrove zone, Deep Bay, Shenzhen, China. Journal of Xiamen University, 37, 121–130. (in Chinese with English abstract).Google Scholar
  44. Wang, Y. J., Ren, Z. G., & Delacy, T. (1999). A preliminary study on the management strategies in Futian mangrove and birds nature reserve, Shenzhen. Chinese Biodiversity, 7, 351–354.Google Scholar
  45. Wang, S. H., Yang, Z. M., & Xu, L. L. (2003a). Mechanisms of copper toxicity and resistance of plants. Ecology and Environment, 3, 336–341.Google Scholar
  46. Wang, B. S., Zan, Q. J., Zhang, W. Y., & Wang, Y. J. (2003b). Accumulation and cycle of heavy metals in Sonneratia apetala and S. caseolaris mangrove community at Futian of Shenzhen, China. Marine Science Bulletin, 5(1), 59–68.Google Scholar
  47. Xie, H. W., Wen, B., Guo, Y., Shi, Y. Z., & Wu, Y. H. (2010). Community characteristics and distribution of metal elements in mangroves in Futian of Shenzhen, China. Guihaia, 30, 64–69. (in Chinese with English abstract).Google Scholar
  48. Yang, Q., Tam, N. F. Y., Wong, Y. S., Luan, T. G., Su, W. S., Lan, C. Y., et al. (2008). Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian, Shenzhen, China. Marine Pollution Bulletin, 57, 735–743.CrossRefGoogle Scholar
  49. Zan, Q. J., Wang, Y. J., & Wang, B. S. (2002). Accumulation and cycle of heavy metal in Sonneratia apetala and S. caseolaris mangrove community at Futian of Shenzhen, China. Environmental Science, 23, 81–88. (in Chinese with English abstract).Google Scholar
  50. Zan, Q. J., Wang, B. S., Wang, Y. J., & Li, M. J. (2003). Ecological assessment on the introduced Sonneratia caseolaris and Sonneratia apetala at the mangrove forest of Shenzhen Bay, China. Acta Botanica Sinica, 45, 544–551.Google Scholar
  51. Zhang, J., Wang, H., Chen, G., & Li, M. (2001). Transportation, accumulation and circulation of heavy metals in mangrove in Futian, Shenzhen. Guangzhou Environmental Sciences, 16, 36–39. (in Chinese with English abstract).Google Scholar
  52. Zhou, Y. W., Peng, Y. S., Li, X. L., & Chen, G. Z. (2011). Accumulation and partitioning of heavy metals in mangrove rhizosphere sediments. Environment and Earth Science, 64, 799–807.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.E118, School of Environment and Energy, Shenzhen Graduate SchoolPeking UniversityNanshan DistrictPeople’s Republic of China
  2. 2.College of Life SciencesNankai UniversityTianjinChina

Personalised recommendations