Environmental Geochemistry and Health

, Volume 35, Issue 6, pp 727–733 | Cite as

The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil

  • Myoung-Soo Ko
  • Hyun-Sung Park
  • Kyoung-Woong Kim
  • Jong-Un Lee
Original Paper


Bioleaching of As from the soil in an abandoned Ag–Au mine was carried out using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. A. ferrooxidans is an iron oxidizer and A. thiooxidans is a sulfur oxidizer. These two microbes are acidophilic and chemoautotrophic microbes. Soil samples were collected from the Myoungbong and Songcheon mines. The main contaminant of the soil was As, with an average concentration of 4,624 mg/kg at Myoungbong and 5,590 mg/kg at Songcheon. A. ferrooxidans and A. thiooxidans generated lower pH conditions during their metabolism process. The bioleaching of As from soil has a higher removal efficiency than chemical leaching. A. ferrooxidans could remove 70 % of the As from the Myoungbong and Songcheon soils; however, A. thiooxidans extracted only 40 % of the As from the Myoungbong soil. This study shows that bioleaching is an effective process for As removal from soil.


Bioleaching Arsenic Mine soil Acidithiobacillusferrooxidans Acidithiobacillus thiooxidans 


  1. Boon, M., Snijder, M., Hansford, G., & Heijnen, J. (1998). The oxidation kinetics of zinc sulphide with Thiobacillus ferrooxidans. Hydrometallurgy, 48(2), 171–186.CrossRefGoogle Scholar
  2. Borůvka, L., Kozák, J., Mühlhanselová, M., Donátová, H., Nikodem, A., & Němeček, K. (2012). Effect of covering with natural topsoil as a reclamation measure on brown-coal mining dumpsites. Journal of Geochemical Exploration, 113, 118–123.CrossRefGoogle Scholar
  3. Bosecker, K. (2001). Microbial leaching in environmental clean-up programmes. Hydrometallurgy, 59(2–3), 245–248.CrossRefGoogle Scholar
  4. Bosecker, K. (2006). Bioleaching: metal solubilization by microorganisms. FEMS Microbiology Reviews, 20(3–4), 591–604.CrossRefGoogle Scholar
  5. Businelli, D., Massaccesi, L., Said-Pullicino, D., & Gigliotti, G. (2009). Long-term distribution, mobility and plant availability of compost-derived heavy metals in a landfill covering soil. Science of the Total Environment, 407(4), 1426–1435.CrossRefGoogle Scholar
  6. Chen, S. Y., & Lin, J. G. (2001). Effect of substrate concentration on bioleaching of metal-contaminated sediment. Journal of Hazardous Materials, 82(1), 77–89.CrossRefGoogle Scholar
  7. Chutia, P., Kato, S., Kojima, T., & Satokawa, S. (2009). Arsenic adsorption from aqueous solution on synthetic zeolites. Journal of Hazardous Materials, 162(1), 440–447.CrossRefGoogle Scholar
  8. Giménez, J., Martínez, M., de Pablo, J., Rovira, M., & Duro, L. (2007). Arsenic sorption onto natural hematite, magnetite, and goethite. Journal of Hazardous Materials, 141(3), 575–580.CrossRefGoogle Scholar
  9. Gu, X., & Wong, J. W. C. (2004). Identification of inhibitory substances affecting bioleaching of heavy metals from anaerobically digested sewage sludge. Environmental Science and Technology, 38(10), 2934–2939.CrossRefGoogle Scholar
  10. Korean Ministry of Environment (2010). Soil Environment Standard Test, Soil Environment Preservation Act.Google Scholar
  11. Lee, J.-S., Chon, H.-T., Kim, K.-W., & Kim, J.-Y. (2003). Risk assessment of toxic heavy metals in abandoned metal mine areas. Journal of the Korean Society for Geosystem Engineering (in Korea), 40, 264–273.Google Scholar
  12. Liu, Y. G., Zhou, M., Zeng, G. M., Wang, X., Li, X., & Fan, T. (2008). Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria: Effects of substrate concentration. Bioresource Technology, 99(10), 4124–4129.CrossRefGoogle Scholar
  13. Ok, Y. S., Kim, S.-C., Kim, D.-K., Skousen, J. G., Lee, J.-S., Cheong, Y.-W., Kim, S.-J., & Yang, J. E. (2011a). Ameliorants to immobilize Cd in rice paddy soils contaminated by abandoned metal mines in Korea. Environmental Geochemistry and Health, 33, 23–30.CrossRefGoogle Scholar
  14. Ok, Y. S., Lim, J. E., & Moon, D. H. (2011b). Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environmental Geochemistry and Health, 33(1), 83–91.CrossRefGoogle Scholar
  15. Schippers, A., Jozsa, P. G., Sand, W., Kovacs, Z. M., & Jelea, M. (2000). Microbiological pyrite oxidation in a mine tailings heap and its relevance to the death of vegetation. Geomicrobiology Journal, 17(2), 151–162.CrossRefGoogle Scholar
  16. Silverman, M. P., & Lundgren, D. G. (1959). Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans I. An improved medium and a harvesting procedure for securing high cell yields. Journal of Bacteriology, 77(5), 642–647.Google Scholar
  17. Sreekrishnan, T., Tyagi, R., Blais, J., & Campbell, P. (1993). Kinetics of heavy metal bioleaching from sewage sludge—I. Effects of process parameters. Water Research, 27(11), 1641–1651.CrossRefGoogle Scholar
  18. Stookey, L. L. (1970). Ferrozine—A new spectrophotometric reagent for iron. Analytical Chemistry, 42(7), 779–781.CrossRefGoogle Scholar
  19. Zhang, W., Singh, P., Paling, E., & Delides, S. (2004). Arsenic removal from contaminated water by natural iron ores. Minerals Engineering, 17(4), 517–524.CrossRefGoogle Scholar
  20. Zhang, J., Zhang, X., Ni, Y., Yang, X., & Li, H. (2007). Bioleaching of arsenic from medicinal realgar by pure and mixed cultures. Process Biochemistry, 42(9), 1265–1271.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Myoung-Soo Ko
    • 1
  • Hyun-Sung Park
    • 2
  • Kyoung-Woong Kim
    • 1
  • Jong-Un Lee
    • 3
  1. 1.School of Environmental Science and EngineeringGwangju Institute of Science and Technology (GIST)GwangjuRepublic of Korea
  2. 2.Technology Research CenterMine Reclamation Corporation (MIRECO), Coal CenterSeoulRepublic of Korea
  3. 3.Department of Energy and Resources EngineeringChonnam National UniversityGwangjuRepublic of Korea

Personalised recommendations