Advertisement

Environmental Geochemistry and Health

, Volume 35, Issue 1, pp 89–99 | Cite as

Geochemistry and health risk assessment of arsenic exposure to street dust in the zinc smelting district, Northeast China

  • Sujuan Xu
  • Na Zheng
  • Jingshuang Liu
  • Yang Wang
  • Shouzhi Chang
Original Paper

Abstract

The aim of this study was to investigate arsenic (As) accumulation in street dust and health risk of population. The investigation concentrated on: a. pollution levels of As in street dust; b. spatial distribution of As in street dust; c. physicochemical properties analysis of street dust; and d. assessment of population health risk due to As exposure to street dust. As concentration in street dust ranged from 3.33 to 185.1 mg kg−1, with a mean of 33.10 mg kg−1, which was higher than the background value of Liaoning soil. As contamination level of the area closing to Huludao Zinc Plant (HZP) was highest. Spatial variation showed that the pollution center was close to HZP, formed radial distribution pattern and extended to the northeast and southwest of HZP. The pH and organic matter of street dust were both higher than the background values of soil in Liaoning. There was significantly negative correlation between As concentration and the pH. The mass percentages of particles 180–100, <100–75, <75–63, and <63 μm were 29.8, 3.7, 21.3, and 4.2 %, respectively. The highest of As concentration was found in the smallest particle size (<63 μm). As loadings in the particles of grain size 180–100 and <75–63 μm were higher than other particle fractions. Results of the risk assessment indicated that the highest risk was associated with the ingestion of street dust particles. Health risk for different use scenarios to human decreased in the order of HZP > Industrial district > School > Commercial center > Residential area. Around HZP, Hazard Index (HI) for children and cancer risk of As by street dust exposure exceeded the acceptable values. It indicated that there was a potential adverse effect on children health by As exposure to the street dust of Huludao.

Keywords

As Street dust Spatial distribution Pollution Health risk 

Notes

Acknowledgments

The authors would like to acknowledge the support of the Science Innovation Program of the Chinese Academy of Sciences (No. KZCX2-YW-QN306) and the National Natural Science Foundation of China (No. 41171392 and 40803021).

References

  1. Adgate, J. L., Willis, R. D., Buckley, T. J., Chow, J. C., Watson, J. G., Rhoads, G. G., et al. (1998). Chemical mass balance source apportionment of lead in house dust. Environmental Science and Technology, 32, 108–114. doi: 10.1021/es970052x.CrossRefGoogle Scholar
  2. Ahmed, F., Bibi, M. H., & Ishiga, H. (2007). Environmental assessment of Dhaka City (Bangladesh) based on trace metal contents in road dusts. Environmental Geology, 51, 975–985. doi: 10.1007/s00254-006-0367-1.CrossRefGoogle Scholar
  3. Bhuiyan, M., Parvez, L., Islam, M., Dampare, S., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Material, 173, 384–392. doi: 10.1016/j.jhazmat.2009.08.085.CrossRefGoogle Scholar
  4. Chang, J., Liu, M., Li, X., Lin, X., Wang, L., & Gao, L. (2008). Fractionation and bioavailability of heavy metal contamination of urban surface dusts in Shanghai City. Environmental Science, 29(12), 3489–3495. (in Chinese).Google Scholar
  5. CNEMC (China National Environmental Monitoring Centre). (1990). The background values of Chinese soils. Beijing: Environmental Science Press of China. (in Chinese).Google Scholar
  6. De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere, 66, 505–513. doi: 10.1016/j.chemosphere.2006.05.065.CrossRefGoogle Scholar
  7. Duong, T. T. T., & Lee, B.-K. (2009). Partitioning and mobility behavior of metals in road dusts from national-scale industrial areas in Korea. Atmospheric Environment, 43, 3502–3509. doi: 10.1016/j.atmosenv.2009.04.036.CrossRefGoogle Scholar
  8. Faiz, Y., Tufail, M., Javed, M. T., Chaudhry, M. M., & Naila-Siddique, (2009). Road dust pollution of Cd, Cu, Ni, Pb and Zn along Islamabad Expressway, Pakistan. Microchemical Journal, 92, 186–192. doi: 10.1016/j.microc.2009.03.009.CrossRefGoogle Scholar
  9. Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola. A tropical urban environment. Atmosoheric Environment, 39, 4501–4512. doi: 10.1016/j.atmosenv.2005.03.026.CrossRefGoogle Scholar
  10. Gent, J. F., Belanger, K., Triche, E. W., Bracken, M. B., Beckett, W. S., & Leaderer, B. P. (2009). Association of pediatric asthma severity with exposure to common household dust allergens. Environmental Research, 109, 768–774. doi: 10.1016/j.envres.2009.04.010.CrossRefGoogle Scholar
  11. Han, Y. M., Cao, J., Posmentier, E. S., Fung, K., Tian, H., & An, Z. S. (2008). Particulate-associated potentially harmful elements in urban road dusts in Xi’an, China. Applied Geochemistry, 23, 835–845. doi: 10.1016/j.apgeochem.2007.09.008.CrossRefGoogle Scholar
  12. Hanesch, M., Rantitsch, G., Hemetsberger, S., & Scholger, R. (2007). Lithological and pedological influences on the magnetic susceptibility of soil: their consideration in magnetic pollution mapping. Science of Total Environment, 38, 351–363. doi: 10.1016/j.scitotenv.2007.04.007.CrossRefGoogle Scholar
  13. Hu, X., Zhang, Y., Luo, J., Wang, T., Lian, H., & Ding, Z. (2011). Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environmental Pollution, 159, 1215–1221. doi: 10.1016/j.envpol.2011.01.037.CrossRefGoogle Scholar
  14. IPCS (International Programme on Chemical Safety). (2001). Environmental health criteria 224: Arsenic and arsenic compounds (2nd ed.). Geneva: World Health Organization (WHO).Google Scholar
  15. Kato, K., Calafat, A. M., & Needham, L. L. (2009). Polyfluoroalkyl chemicals in house dust. Environmental Research, 109, 518–523. doi: 10.1016/j.envres.2009.01.005.CrossRefGoogle Scholar
  16. Kennedy, N. J., & Hinds, W. C. (2002). Inhalability of large solid particles. Journal Aerosol Science, 33, 237–255. doi: 10.1016/S0021-8502(01)00168-9.CrossRefGoogle Scholar
  17. Krishna, A., & Govil, P. (2008). Assessment of heavy metal contamination in soils around Manali industrial area, Chennai, Southern India. Environmental Geology, 54, 1465–1472. doi: 10.1007/s00254-007-0927-z.CrossRefGoogle Scholar
  18. Liu, M., Cheng, S. B., Ou, D. N., Hou, L. J., Gao, L., Wang, L. L., et al. (2007). Characterization, identification of road dust PAHs in central Shanghai areas, China. Atmospheric Environment, 41, 8785–8795. doi: 10.1016/j.atmosenv.2007.07.059.CrossRefGoogle Scholar
  19. Lu, X. W., Li, L. Y., Wang, L. J., Lei, K., Huang, J., & Zhai, Y. X. (2009a). Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmosoheric Environment, 43, 2489–2496. doi: 10.1016/j.atmosenv.2009.01.048.CrossRefGoogle Scholar
  20. Lu, X. W., Wang, L. J., Lei, K., Huang, J., & Zhai, Y. X. (2009b). Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. Journal Hazardous Materials, 161, 1058–1062. doi: 10.1016/j.jhazmat.2008.04.052.CrossRefGoogle Scholar
  21. Lu, C. A., Zhang, J. F., Jiang, H. M., Yang, J. C., Zhang, J. T., Wang, J. Z., et al. (2010). Assessment of soil contamination with Cd, Pb and Zn and source identification in the area around the Huludao Zinc Plant. Journal Hazardous Materials, 182(1–3), 743–748. doi: 10.1016/j.jhazmat.2010.06.097.CrossRefGoogle Scholar
  22. Luo, W., Lu, Y., Wang, G., Shi, Y., Wang, T., & Giesy, J. P. (2008). Distribution and availability of arsenic in soils from the industrialized urban area of Beijing, China. Chemosphere, 72, 797–802. doi: 10.1016/j.chemosphere.2008.03.003.CrossRefGoogle Scholar
  23. Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235. doi: 10.1016/S0039-9140(02)00268-0.CrossRefGoogle Scholar
  24. Manno, E., Varrica, D., & Dongarrà, G. (2006). Metal distribution in road dust samples collected in an urban area close to a petrochemical plant at Gela, Sicily. Atmosoheric Environment, 40, 5929–5941. doi: 10.1016/j.atmosenv.2006.05.020.CrossRefGoogle Scholar
  25. Müller, G. (1979). Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971. Umschau, 79, 778–783.Google Scholar
  26. Naspinski, C., Lingenfelter, R., Cizmas, L., Naufal, Z., He, L. Y., Islamzadeh, A., et al. (2008). A comparison of concentrations of polycyclic aromatic compounds detected in dust samples from various regions of the world. Environment International, 34, 988–993. doi: 10.1016/j.envint.2008.03.008.CrossRefGoogle Scholar
  27. Ng, J. C., Qi, L., Wang, J. P., Xiao, X. L., Shahin, M., Moore, M. R., et al. (2001). Mutations in C57Bl/6 J and metallothionein knock-out mice ingested sodium arsenate in drinking water for over two years. In Chappell, W. R., Abernathy, C. O., & Calderon, R. L. (Eds.), Book chapter in Arsenic: Exposure and health effects (pp. 231–242). Oxford: Elsevier Science.Google Scholar
  28. Nicholson, K. W. (1988). A review of particle resuspension. Atmosoheric Environment, 22, 2639–2651. doi: 10.1016/0004-6981(88)90433-7.CrossRefGoogle Scholar
  29. Ordóñez, A., Loredo, J., De Miguel, E., & Charlesworth, S. (2003). Distribution of heavy metals in the street dusts and soils of an industrial city in Northern Spain. Archives Environmental Contamination Toxicology, 44, 160–170. doi: 10.1007/s00244-002-2005-6.CrossRefGoogle Scholar
  30. PHE (Public Health and Environment). (2010). Exposure to arsenic: A major public health concern. Geneva: World Health Organization (WHO).Google Scholar
  31. Sehmel, G. A. (1980). Particle resuspension: A review. Environment International, 4, 107–127. doi: 10.1016/0160-4120(80)90005-7.CrossRefGoogle Scholar
  32. Shi, G., Chen, Z., Bi, C., Li, Y., Teng, J., Wang, L., et al. (2010). Comprehensive assessment of toxic metals in urban and suburban street deposited sediments (SDSs) in the biggest metropolitan area of China. Environmental Pollution, 158(3), 694–703. doi: 10.1016/j.envpol.2009.10.020.CrossRefGoogle Scholar
  33. Singh, M., Ansari, A., Müller, G., & Singh, B. (1997). Heavy metals in freshly deposited sediments of the Gomati River (a tributary of the Ganga River): effects of human activities. Environmental Geology, 29(3/4), 246–252. doi: 10.1007/s002540050123.CrossRefGoogle Scholar
  34. Sutherland, R. A. (2003). Lead in grain size fractions of road deposited sediment. Environmental Pollution, 21, 229–237. doi: 10.1016/S0269-7491(02)00219-1.CrossRefGoogle Scholar
  35. Sutherland, R. A., & Tolosa, C. A. (2000). Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environmental Pollution, 110, 483–495. doi: 10.1016/S0269-7491(99)00311-5.CrossRefGoogle Scholar
  36. Tokalloğlu, S., & Kartal, S. (2006). Multivariate analysis of the data and speciation of heavy metals in street dust samples from the Organized Industrial District in Kayseri (Turkey). Atmospheric Environmental, 40, 2797–2805. doi: 10.1016/j.atmosenv.2006.01.019.CrossRefGoogle Scholar
  37. US Department of Energy (2011). RAIS: Risk assessment information system.Google Scholar
  38. US Environmental Protection Agency (USEPA) (1989). Risk assessment guidance for superfund, vol. I: human health evaluation manual. EPA/540/1-89/002. Office of Solid Waste and Emergency Response. Washington, DC.Google Scholar
  39. US Environmental Protection Agency (USEPA). (1990). Record of decision (ROD) [Abstract ROD Number: EPA/ROD/R08-90/028; ROD date; 03/30/90 site: Whitewood creek. EPA ID Number: SDD980717136. Location: Whitewood, SD. Operable unit: 01 Environmental Protection Agency]. EPA, Washington, DC.Google Scholar
  40. US Environmental Protection Agency (USEPA) (1996). Soil screening guidance: Technical background document. EPA/540/R-95/128. Office of Soild Waste and Emergency Response. Washington, DC.Google Scholar
  41. US Environmental Protection Agency (USEPA) (2001). Supplemental guidance for developing soil screening levels for superfund sites. OSWER 9355.4-24. Office of Soild Waste and Emergency Response. Washington, DC.Google Scholar
  42. US Environmental Protection Agency (USEPA) (2004). Risk assessment guidance for superfund volume I: Human health evaluation manual (Part E, supplemental guidance for dermal risk assessment). EPA/540/R/99/005. Office of Superfund Remediation and Technology Innovation. Washington, DC.Google Scholar
  43. Water, U. K. (2001). Arsenic briefing paper. London.Google Scholar
  44. Wei, B., Jiang, F., Li, X., & Mu, S. (2009). Spatial distribution and contamination assessment of heavy metals in urban road dusts from Urumqi, NW China. Microchemical Journal, 93, 147–152. doi: 10.1016/j.microc.2009.06.001.CrossRefGoogle Scholar
  45. Xiang, L., Li, Y. X., Shi, J. H., & Liu, J. L. (2010). Investigation of heavy metal and polycyclic aromatic hydrocarbons contamination in street dusts in Urban Beijing. Environmental Science, 31(1), 159–167 (in Chinese).Google Scholar
  46. Zhang, X. W., Wang, Q. C., Zheng, D. M., Zhang, S. Q., Zheng, N., & Zhang, Z. S. (2008). Spatial pattern and risk assessment of soil arsenic around Huludao Zinc Plant. Journal of Agro-Environment Science, 27(5), 1769–1773 (in Chinese).Google Scholar
  47. Zhao, H., Li, X., Wang, X., & Tian, D. (2010). Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban runoff in Beijing, China. Journal Hazardous Materials, 183, 203–210. doi: 10.1016/j.jhazmat.2010.07.012.CrossRefGoogle Scholar
  48. Zheng, N., Liu, J. S., Wang, Q. C., & Liang, Z. Z. (2010a). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408, 726–733. doi: 10.1016/j.scitotenv.2009.10.075.CrossRefGoogle Scholar
  49. Zheng, N., Liu, J. S., Wang, Q. C., & Liang, Z. Z. (2010b). Heavy metals exposure of children from stairway and sidewalk dust in the smelting district, northeast of China. Atmospheric Environmental, 44, 3239–3245. doi: 10.1016/j.atmosenv.2010.06.002.CrossRefGoogle Scholar
  50. Zheng, N., Wang, Q. C., Liang, Z. Z., & Zheng, D. M. (2008). Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China. Environmental Pollution, 154(1), 135–142. doi: 10.1016/j.envpol.2008.01.001.CrossRefGoogle Scholar
  51. Zheng, N., Wang, Q. C., Zhang, X. W., & Zheng, D. M. (2007a). Population health risk due to dietary intake of heavy metals in smelting area of Huludao City, China. Science of the Total Environment, 387, 96–104. doi: 10.1016/j.scitotenv.2007.07.044.CrossRefGoogle Scholar
  52. Zheng, N., Wang, Q. C., & Zheng, D. M. (2007b). Mercury contamination and health risk to crops around the zinc smelting plant in Huludao City, Northeast of China. Environmental Geochemistry and Health, 29, 385–393. doi: 10.1007/s10653-007-9083-3.CrossRefGoogle Scholar
  53. Zhu, W., Bian, B., & Li, L. (2008). Heavy metal contamination of road-deposited sediments in a medium size of China. Environmental Monitoring and Assessment, 147, 171–181. doi: 10.1007/s10661-007-0108-2.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sujuan Xu
    • 1
    • 2
  • Na Zheng
    • 1
  • Jingshuang Liu
    • 1
  • Yang Wang
    • 1
  • Shouzhi Chang
    • 1
    • 2
  1. 1.Northeast Institute of Geography and Agricultural EcologyChinese Academy of SciencesChangchun CityChina
  2. 2.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations