Environmental Geochemistry and Health

, Volume 35, Issue 1, pp 119–132 | Cite as

Arsenic contamination: a potential hazard to the affected areas of West Bengal, India

  • Sefaur Rahaman
  • A. C. Sinha
  • R. Pati
  • D. Mukhopadhyay
Original Paper


Arsenic contamination in groundwater is becoming more and more a worldwide problem. Nearing 50 million of people are at health risk from arsenic contamination at Ganga–Meghna–Bramhaputra basin. The experimental results of the five blocks under Malda district of West Bengal, India, showed that the arsenic concentration in groundwater (0.41–1.01 mg/l) was higher than the permissible limit for drinking water (0.01 mg/l) (WHO) and FAO (Food and Agriculture Organization) permissible limit for irrigation water (0.10 mg/l). The soil arsenic level (13.12 mg/kg) crossed the global average (10.0 mg/kg), but within the maximum acceptable limit for agricultural soil (20.0 mg/kg) recommended by the European Union. The total arsenic concentration on food crops varied from 0.000 to 1.464 mg/kg of dry weight. The highest mean arsenic concentration was found in potato (0.456 mg/kg), followed by rice grain (0.429 mg/kg). The total mean arsenic content (milligrams per kg dry weight) in cereals ranged from 0.121 to 0.429 mg/kg, in pulses and oilseeds ranged from 0.076 to 0.168 mg/kg, in tuber crops ranged from 0.243 to 0.456 mg/kg, in spices ranged from 0.031 to 0.175 mg/kg, in fruits ranged from 0.021 to 0.145 mg/kg and in vegetables ranged from 0.032 to 0.411 mg/kg, respectively. Hence, arsenic accumulation in cereals, pulses, oilseed, vegetables, spices, cole crop and fruits crop might not be safe in future without any sustainable mitigation strategies to avert the potential arsenic toxicity on the human health in the contaminated areas.


Arsenic Water Soil Rice Mango Vegetables Pulses Amaranth 



The authors are thankful to the National Agricultural Innovation Project, Component-IV (Indian Council of Agricultural Research), Pusa, New Delhi, India, for providing fund to carry out the investigation, and to the Department of Agronomy & Soil Science and Agricultural Chemistry, Faculty of Agriculture, Uttar Banga Krishi Viswavidyalaya, Pundibari, Cooch Behar, West Bengal, India, for providing the laboratory facilities.


  1. Abedin, M. J., Cresser, M. S., Meharg, A. A., Feldmann, J., & Cotter-Howells, J. (2002). Arsenic accumulation and metabolism in rice (Oryza sativa L.). Environmental Science Technology, 36, 962–968.CrossRefGoogle Scholar
  2. Alam, M. K., Hassan, A. K., Khan, M. R., et al. (1990). Geological Map of Bangladesh, scale 1:1 000. Dhaka: Geological Survey of Bangladesh.Google Scholar
  3. Alam, M. G. M., Snow, E. T., & Tanaka, A. (2003). Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Science of the Total Environment, 308, 83–96.CrossRefGoogle Scholar
  4. BGS, DPHE. (2001). Arsenic contamination of groundwater in Bangladesh. In Kinniburgh D. G., Smedley P. L. (Eds.), British Geological Survey (Technical Report, WC/00/19).Google Scholar
  5. Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2009) Accumulation of arsenic and its distribution in rice plant (Oryza sativa L.) in Gangetic West Bengal, India. Paddy and Water Environment doi: 10.1007/s10333-009-0180-z.
  6. Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2010). Arsenic Contamination in Rice, Wheat, Pulses, and Vegetables: A Study in an Arsenic Affected Area of West Bengal. India: Water Air Soil Pollution. doi: 10.1007/s11270-010-0361-9.Google Scholar
  7. Biswas, B. K., Dhar, R. K., Samanta, G., Mandal, B. K., Chakraborti, D., Faruk, I., et al. (1998). Detailed study report of Samta, one of the arsenic affected village of Jessore District, Bangladesh. Current Science, 74, 134–145.Google Scholar
  8. Chakraborty, D., Rahman, M. M., Paul, K., Chowdhury, U. K., Sengupta, M. K., Lodh, D., et al. (2002). Arsenic calamity in the Indian subcontinent: What lessons have been learnt? Talanta, 58, 3–22.CrossRefGoogle Scholar
  9. Chowdhury U. K., Rahman, M. M. & Mandal, B. K. (2001). Groundwater arsenic contamination and human suffering in West Bengal, India and Bangladesh. Environmental Sciences, 8, 393–415.Google Scholar
  10. Dahal, B. M., Fuerhacker, M., Mentler, A., Karki, K. B., Shrestha, R. R., & Blum, W. E. H. (2008). Arsenic contamination of soils and agricultural plants through irrigation water in Nepal. Environmental Pollution, 155, 157–163.CrossRefGoogle Scholar
  11. Das, H. K., Mitra, A. K., Sengupta, P. K., Hossain, A., Islam, F., & Rabbani, G. H. (2004). Arsenic concentrations in rice, vegetables, and fish in Bangladesh: A preliminary study. Environment International, 30, 383–387.CrossRefGoogle Scholar
  12. Das, H. K., Sengupta, P. K., Hossain, A., Islam, M., & Islam, F. (2002). Diversity of environmental arsenic pollution in Bangladesh. In M. F. Ahmed, S. A. Tanveer, & A. B. M. Badruzzaman (Eds.), Bangladesh environment (Vol. 1, pp. 234–244). Dhaka, Bangladesh: Bangladesh Paribesh Andolon.Google Scholar
  13. Dittmar, J., Voegelin, A., Roberts, L. C., Hug, S. J., Saha, G. C., Ali, M. A., et al. (2007). Spatial distribution and temporal variability of arsenic in irrigated rice fields in Bangladesh. Environmental Science Technology, 41, 5967–5972.CrossRefGoogle Scholar
  14. Duxbury, J. M., Mayer, A. B., Lauren, J. G., & Hassan, N. (2003). Food chain aspects of arsenic contamination in Bangladesh: Effects on quality and productivity of rice. Journal of Environmental Science and Health, Part A 38, 1–69.Google Scholar
  15. FAO Food and Agriculture Organization. (1985). Water quality guidelines for maximum crop production. Food and Agricultural Organization/UN.
  16. FAO/WHO. (1989). Expert committee on food additives: Evaluation of certain food additives and contaminants, 33rd Report, Technical Report Ser. 776. World Health Organization, Geneva.Google Scholar
  17. Farid, A. T. M., Roy, K. C., Hossain, K. M., & Sen, R. (2003). A study of arsenic contaminated irrigation water and its carried over effect on vegetable. In F. Ahmed, M. A. Ali, & Z. Adeel (Eds.), Fate of arsenic in the environment (pp. 113–121). Dhaka, Bangladesh: ITN Centre, BUET on behalf of the Bangladesh University of Engineering and Technology and The United Nations University.Google Scholar
  18. Foley, N. K., & Ayuso, R. A. (2008). Mineral sources and transport pathways for arsenic release in a coastal watershed, USA. Geochemistry: Exploration, Environment, Analysis, 8, 59–75.CrossRefGoogle Scholar
  19. Guha-Mazumder, D. N., Haque, R., Ghose, N., De, B. K., Santra, A., & Chakraborty, D. (2000). Arsenic in drinking water and the prevalence of respiratory effects in West Bengal, India. International Journal of Epidemiology, 29, 1047–1052.CrossRefGoogle Scholar
  20. Huang, R. Q., Gao, S. F., Wang, W. L., Staunton, S., & Wang, G. (2006). Soil arsenic availability and the transfer of soil arsenic to crops in suburban areas in Fujian Province, southeast China. Science of the Total Environment, 368, 531–541.CrossRefGoogle Scholar
  21. Imamul Huq, S. M., & Naidu, R. (2005). Arsenic in ground water and contamination of the food chain: Bangladesh scenario, In J. Bundschuh, P. Bhattacharya, D. Chandra sekharam (Eds.) Natural arsenic in groundwater: Occurrence, remediation and management, Balkema: New York. pp 95–101.Google Scholar
  22. Islam, M. R., Jahiruddin, M., Rahman, G. K. M. M., Miah, M. A. M., Farid, A. T. M., Panaullah, G. M., et al. (2004). Assessment of arsenic in the water–soil–plant systems in gangetic flood plains of Bangladesh. Asian Journal of Plant Science, 3, 489–493.CrossRefGoogle Scholar
  23. Johnston, R., & Barnard, W. M. (1979). Comparative effectiveness of fourteen solutions for extracting arsenic from four Western New York soils. Soil Science Society of American Journal, 43, 304–308.CrossRefGoogle Scholar
  24. Larsen, E. H., Moseholm, L., & Nielsen, M. M. (1992). Atmospheric deposition of trace elements around point sources and human health risk assessment. II. Uptake of arsenic and chromium by vegetables grown near a wood preservation factory. The Science of the Total Environment, 126, 263–275. doi: 10.1016/0048-9697(92)90201-3.CrossRefGoogle Scholar
  25. Liu, W. J., Zhu, Y. G., Smith, S. A., & Smith, S. E. (2004). Do iron plaque and genotypes affect arsenate uptake and translocation by rice seedlings (Oryza sativa L.) grown in solution culture. Journal of Experimental Botany, 55(403), 1707–1713.CrossRefGoogle Scholar
  26. Mailloux, B. J., Alexandrova, E., Keimowitz, A. R., Wovkulich, K., Freyer, G. A., Herron, M., et al. (2009). Microbial mineral weathering for nutrient acquisition releases arsenic. Applied Environmental Microbiology, 75, 2558–2565.CrossRefGoogle Scholar
  27. Mandal, B. K. (1998). Status of arsenic problem in two blocks out of sixty eight groundwater arsenic-affected districts of West Bengal, India. Ph.D. thesis, Jadavpur University.Google Scholar
  28. Mandal, B. K., Roy, C. T., Samanta, G., Basu, G. K., Chowdhury, P. P., & Chanda, C. R. (1996). Arsenic in groundwater in seven districts of West Bengal, India: The biggest arsenic calamity in the world. Current Science, 70, 976–986.Google Scholar
  29. Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58, 201–235.CrossRefGoogle Scholar
  30. Marchiol, L., Assolari, S., Sacco, P., & Zebri, G. (2004). Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanussativus) grown on ulti contaminated soil. Environmental Pollution, 132, 21–27.CrossRefGoogle Scholar
  31. McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: The example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1225–1293.CrossRefGoogle Scholar
  32. Meharg, A. A. (2004). Arsenic in rice-understanding a new disaster for South-East Asia. Trends Plant Sciences, 9, 415–417.CrossRefGoogle Scholar
  33. Meharg, A. A., & Rahman, M. M. (2003). Arsenic contamination of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science Technology, 37(2), 229–234.CrossRefGoogle Scholar
  34. Mehmood, A., Hayat, R., Wasim, M., & Akhtar, M. S. (2009). Mechanisms of arsenic adsorption in calcareous soils. Journal of Agriculture and Biological Science, 1(1), 59–65.Google Scholar
  35. Meneses, M., Llobet, J. M., Granero, S., Schuhmacher, M., & Domingo, J. L. (1999). Monitoring metals in the vicinity of a municipal waste incinerator: Temporal variation in soils and vegetation. Science Total Environment, 226, 157–164.CrossRefGoogle Scholar
  36. Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.CrossRefGoogle Scholar
  37. O’Neil, P. (1995). Heavy metals in soils. In B. J. Alloway (Ed.), Arsenic (pp. 105–121). London: Blackie Academic and Professional.Google Scholar
  38. Phuong, T. D., Chuong, P. V., Khiem, D. T., et al. (1999). Elemental content of Vietnamese rice. Part 1. Sampling, analysis and comparison with previous studies. Analyst, 124, 553–560.CrossRefGoogle Scholar
  39. Purkait, B., & Mukherjee, A. (2006). A statistical approach to correlate arsenic contamination in groundwater with some related parameters: a case study from Malda district, West Bengal, Eastern India. In Dandapat B. S., Mazumder B. S. (Eds.) Proceedings of the international conference on application of fluid mechanics in industry and environment. Chennai/Singapore: Research Publishing, pp. 173–184.Google Scholar
  40. Rahaman, S., Sinha, A. C., & Mukhopadhyay, D. (2011). Effect of water regimes and organic matters on transport of arsenic in summer rice (Oryza sativa L.). Journal of Environmental Sciences, 23(4), 633–639.CrossRefGoogle Scholar
  41. Rahman, M. A., Hasegawa, H., Rahman, M. M., Rahman, M. A., & Miah, M. A. M. (2007). Accumulation of arsenic in tissues of rice plant (Oryza sativa L.) and its distribution infractions of rice grain. Chemosphere, 69, 942–948.CrossRefGoogle Scholar
  42. Roychowdhury, T., Tokunaga, H., & Ando, M. (2003). Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic affected area of West Bengal, India. Science of the Total Environment, 308, 15–35.CrossRefGoogle Scholar
  43. Roychowdhury, T., Tokunaga, H., Uchino, T., & Ando, M. (2005). Effect of arsenic-contaminated irrigation water on agricultural land, soil and plants in West Bengal, India. Chemosphere, 58, 799–810.CrossRefGoogle Scholar
  44. Roychowdhury, T., Uchino, T., Tokunga, H., & Ando, M. (2002). Survey of arsenic in food composites from an arsenic-affected area of West Bengal, India. Food Chemistry Toxicology, 40, 1611–1621.CrossRefGoogle Scholar
  45. Samal, A. C. (2005). An investigation on accumulation of arsenic in ecosystem of Gangetic West Bengal and assessment of potential health risk, Ph.D. Thesis, University of Kalyani, West Bengal, India.Google Scholar
  46. Schoof, R. A., Yost, L. J., Crecelius, E., et al. (1998). Dietary arsenic intake in Taiwanese districts with elevated arsenic in drinking water. Human and Ecological Risk Assessment, 4, 117–135.CrossRefGoogle Scholar
  47. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.CrossRefGoogle Scholar
  48. Stoeppler, M. (1984). Cadmium, lead, mercury, and arsenic concentrations in crops and corresponding soils in the Netherlands. Journal of Agricultural and Food Chemistry, 34, 1067–1074. doi: 10.1021/jf00072a033.Google Scholar
  49. Van Geen, A., Zheng, Y., Versteeg, R., et al. (2003). Spatial variability of arsenic in 6000 tube wells in a 25 km2 area of Bangladesh. Water Resources Research, 39, 1–16.Google Scholar
  50. WHO. (2001). Environmental Health Criteria 224. Arsenic and Arsenic Compounds. Geneva: World Health Organization.Google Scholar
  51. Williams, P. N., Islam, M. R., Raab, A., Hossain, S. A., & Meharg, A. A. (2006). Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in groundwater. Environmental Science Technology, 40, 4903–4908.CrossRefGoogle Scholar
  52. Williams, P. N., Price, A. H., Raab, A., Hossain, S. A., Feldmann, J., & Meharg, A. A. (2005). Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environmental Science and Technology, 39, 5531–5540.CrossRefGoogle Scholar
  53. World Health Organization (WHO). (1981). Task Group on Environmental Health Criteria for Arsenic, Environmental Health Criteria 18 (pp. 1–174). Geneva, Switzerland: WHO.Google Scholar
  54. Xie, Z. M., & Huang, C. Y. (1998). Control of arsenic toxicity in rice plants grown on an arsenic-polluted paddy soil. Communications in Soil Science and Plant Analysis, 29, 2471–2477.CrossRefGoogle Scholar
  55. Xu, X. Y., McGrath, S. P., Meharg, A. A., & Zhao, F. J. (2008). Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science and Technology, 42, 5574–5579.CrossRefGoogle Scholar
  56. Zavala, Y. J., & Duxbury, J. M. (2008). Arsenic in rice: I. Estimating normal levels of total arsenic in rice grain. Environmental Science and Technology, 42, 3856–3860.CrossRefGoogle Scholar
  57. Zia, U., Ahmed, G., Panaullah, M., Gauch Jr, Hugh., Susan, R., McCouch., Wricha, T., Mohammed, S. K., & Duxbury, J. M. (2011). Genotype and environment effects on rice (Oryza sativa L.) grain arsenic concentration in Bangladesh. Plant Soil, 338, 367–382. doi: 10.1007/s11104-010-0551-7.

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Sefaur Rahaman
    • 1
  • A. C. Sinha
    • 1
  • R. Pati
    • 2
    • 3
  • D. Mukhopadhyay
    • 2
  1. 1.Department of Agronomy, Faculty of AgricultureUttar Banga Krishi ViswavidyalayaCooch BeharIndia
  2. 2.Department of Soil Science and Agricultural Chemistry, Faculty of AgricultureUttar Banga Krishi ViswavidyalayaCooch BeharIndia
  3. 3.Viswa Bharati UniversityBirbhumIndia

Personalised recommendations