Environmental Geochemistry and Health

, Volume 34, Issue 1, pp 123–139 | Cite as

Risk-based assessment of multimetallic soil pollution in the industrialized peri-urban area of Huelva, Spain

  • J. C. Fernández-Caliani
Original Paper


The peri-urban soils of Huelva, one of the first industrial cities in Spain, are subject to severe pollution problems primarily due to past poor management of industrial wastes and effluents. In this study, soil cores were collected in seven sites potentially contaminated with toxic chemicals arising from multiple anthropogenic sources, in order to identify trace elements of concern and to assess human health risks associated with them. In most soil core samples, total concentrations of As (up to 4,390 mg kg−1), Cd (up to 12.9 mg kg−1), Cu (up to 3,162 mg kg−1), Pb (up to 6,385 mg kg−1), Sb (up to 589 mg kg−1) and Zn (up to 4,874 mg kg−1) were by more than one order of magnitude greater than the site-specific reference levels calculated on the basis of regional soil geochemical baselines. These chemicals are transferred from the hazardous wastes, mainly crude pyrite and roasted pyrite cinders, to the surrounding soils by acid drainage and atmospheric deposition of wind-blown dust. Locally, elevated concentrations of U (up to 96.3 mg kg−1) were detected in soils affected by releases of radionuclides from phosphogypsum wastes. The results of the human health risk-based assessment for the hypothetical exposure of an industrial worker to the surface soils indicate that, in four of the seven sites monitored, cancer risk due to As (up to 4.4 × 10−5) is slightly above the target health risk limit adopted by the Spanish legislation (1 × 10−5). The cumulative non-carcinogenic hazard index ranged from 2.0 to 12.2 indicating that there is also a concern for chronic toxic effects from dermal contact with soil.


Soil pollution Trace elements Risk-based assessment Peri-urban area Huelva 


  1. Abrahim, G. M. S., & Parker, R. J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136, 227–238.CrossRefGoogle Scholar
  2. AIQB. (2010). Asociación de Industrias Químicas y Básicas de Huelva. Accessed 15 Nov 2010.
  3. Allen, A., Da Silva, N. L. A., & Corubolo, E. (1999). Environmental problems and opportunities of the peri-urban interface and their impact upon the poor. Strategic Environmental Planning and Management for the Peri-urban Interface. Peri-urban Interface Project. Development Planning Unit, University College London, p. 43.Google Scholar
  4. ASTM, American Society for Testing and Materials. (1999). RBCA fate and transport models: Compendium and selection guidance. West Conshohocken PA. Accessed 15 April 2011.
  5. ASTM, American Society for Testing and Materials. (2000). Standard guide for risk based corrective action. West Conshohocken PA. Report E-2081-00.Google Scholar
  6. Barba-Brioso, C., Fernández-Caliani, J. C., Miras, A., Cornejo, J., & Galán, E. (2010). Multi-source water pollution in a highly anthropized wetland system associated with the estuary of Huelva (SW Spain). Marine Pollution Bulletin, 60, 1259–1269.CrossRefGoogle Scholar
  7. Bernabé, J. M., Carretero, M. I., & Galán, E. (2005). Mineralogy and origin of atmospheric particles in the industrial area of Huelva (SW Spain). Atmospheric Environment, 39, 6777–6789.CrossRefGoogle Scholar
  8. Binns, J. A., Maconachie, R. A., & Tanko, A. I. (2003). Water, land and health in urban and peri-urban food production: The case of Kano, Nigeria. Land Degradation and Development, 14, 431–444.CrossRefGoogle Scholar
  9. Bolívar, J. P., García-Tenorio, R., Más, J. L., & Vaca, F. (2002). Radioactive impact in sediments from an estuarine system affected by industrial waste releases. Environment International, 27, 639–645.CrossRefGoogle Scholar
  10. Chopin, E. I. B., & Alloway, B. J. (2007a). Distribution and mobility of trace elements in soils and vegetation around the mining and smelting areas of Tharsis, Riotinto and Huelva, Iberian Pyrite Belt, SW Spain. Water, Air, and Soil pollution, 182, 245–261.CrossRefGoogle Scholar
  11. Chopin, E. I. B., & Alloway, B. J. (2007b). Trace element partitioning and soil particle characterisation around mining and smelting areas at Tharsis, Riotinto and Huelva, SW Spain. Science of the Total Environment, 373, 488–500.CrossRefGoogle Scholar
  12. Connor, J. A., Bowers, R. L., McHugh, T. H., & Spexet, A. H. (2007). RBCA tool kit for chemical releases. Software Guidance Manual. GSI Environmental Inc., p. 120.Google Scholar
  13. Connor, J. A., Newell, C. J., & Malander, M. W. (1998). Parameter estimation guidelines for risk-based corrective action (RBCA) modeling. In: Proceedings of the NGWA Petroleum Hydrocarbons Conference, Houston, Texas.Google Scholar
  14. Dent, D. L., & Pons, L. J. (1995). A world perspective on acid sulphate soils. Geoderma, 67, 263–276.CrossRefGoogle Scholar
  15. FAO. (2006). World reference base for soil resources. A framework for international classification, correlation and communication. World Soil Resources Reports, 103, p. 128.Google Scholar
  16. Fernández-Caliani, J. C., Barba-Brioso, C., González, I., & Galán, E. (2009). Heavy metal pollution in soils around the abandoned mine sites of the Iberian Pyrite Belt (South-West Spain). Water, Air, and Soil pollution, 200, 211–226.CrossRefGoogle Scholar
  17. Fernández-Caliani, J. C., Ruiz, F., & Galán, E. (1997). Clay mineral and heavy metal distributions in the lower estuary of Huelva and adjacent Atlantic shelf. Science of the Total Environment, 198, 181–200.CrossRefGoogle Scholar
  18. Galán, E., Gómez-Ariza, J. L., González, I., Fernández-Caliani, J. C., Morales, E., & Giráldez, I. (2003). Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Applied Geochemistry, 18, 409–421.CrossRefGoogle Scholar
  19. Iriarte, A., Iriarte, P. I., Bouza, P. J., & Martín, F. (2007). Los suelos del entorno de la Ría de Huelva. Consejería de Medio Ambiente de la Junta de Andalucía y Consejo Superior de Investigaciones Científicas, p. 42.Google Scholar
  20. Junta de Andalucía. (2004). Estudio de Elementos Traza en Suelos de Andalucía. Consejería de Medio Ambiente. Accessed 15 Nov 2010.
  21. Li, X., & Thornton, I. (2001). Chemical partitioning of trace and major elements in soils contaminated by mining and smelting activities. Applied Geochemistry, 16, 1693–1706.CrossRefGoogle Scholar
  22. Loredo, J., Ordóñez, A., Charlesworth, S., & De Miguel, E. (2003). Influence of industry on the geochemical urban environment of Mieres (Spain) and associated health risk. Environmental Geochemistry and Health, 25, 307–323.CrossRefGoogle Scholar
  23. Luo, W., Lu, Y., Wang, B., Tong, X., Wang, G., Shi, Y., et al. (2008). Distribution and sources of mercury in soils from former industrialized urban areas of Beijing, China. Environmental Monitoring and Assessment, 158, 507–517.CrossRefGoogle Scholar
  24. Madejón, P., Burgos, P., Murillo, J. M., Cabrera, F., & Madejón, E. (2009). Bioavailability and accumulation of trace elements in soils and plants of a highly contaminated estuary (Domingo Rubio tidal channel, SW Spain). Environmental Geochemistry and Health, 31, 629–642.CrossRefGoogle Scholar
  25. Pérez-López, R., Álvarez-Valero, A. M., & Nieto, J. M. (2007). Changes in mobility of toxic elements during the production of phosphoric acid in the fertilizer industry of Huelva (SW Spain) and environmental impact of phosphogypsum wastes. Journal of Hazardous Materials, 148, 745–750.CrossRefGoogle Scholar
  26. Sáinz, A., Grande, J. A., & De La Torre, M. L. (2004). Characterisation of heavy metal discharge into the Ria of Huelva. Environment International, 30, 557–566.CrossRefGoogle Scholar
  27. Salkield, L. U. (1987). A technical history of the Rio Tinto mines. Some notes on exploitation from pre-phoenician times to the 1950s. Institution of Mining and Metallurgy, London, p. 114.Google Scholar
  28. Salminen, R. (2005). Geochemical Atlas of Europe. Part 1: Background information, methodology and maps. Geological Survey of Finland. Accessed 15 Nov 2010.
  29. Sánchez de la Campa, A. M., De la Rosa, J., Querol, X., Alastuey, A., & Mantilla, E. (2007). Geochemistry and origin of PM10 in the Huelva region, Southwestern Spain. Environmental Research, 103, 305–316.CrossRefGoogle Scholar
  30. Sánchez España, J., López Pamo, E., Santofimia, E., Aduvire, O., Reyes, J., & Barettino, D. (2005). Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20, 1320–1356.CrossRefGoogle Scholar
  31. Schultz, L. G. (1964). Quantitative interpretation of mineralogical composition from X-ray and chemical data for Pierre shale U.S. Geological Survey Professional Papers, 391-C, United States Government Printing Office, Washington, DC, C1-C31.Google Scholar
  32. Serrano, J., & Oñate, E. (1997). Marismas del Pinar. Restauración de espacios degradados por residuos industriales. Medio Ambiente, 26, 48–52.Google Scholar
  33. Tarazona, J. V., Fernández, M. D., & Vega, M. M. (2005). Regulation of contaminated soils in Spain. A new legal instrument. Journal of Soils and Sediments, 5, 121–124.CrossRefGoogle Scholar
  34. Viñals, J., Balart, M. J., & Roca, A. (2002). Inertization of pyrite cinders and co-inertization with electric arc furnace flue dusts by pyroconsolidation at solid state. Waste Management, 22, 773–782.CrossRefGoogle Scholar
  35. Zhao, Y. F., Shi, X. Z., Huang, B., Yu, D. S., Wang, H. J., Sun, W. X., et al. (2007). Spatial distribution of heavy metals in agricultural soils of an industry-based peri-urban area in Wuxi, China. Pedosphere, 17, 44–51.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Departamento de Geología, Facultad de Ciencias ExperimentalesUniversidad de HuelvaHuelvaSpain

Personalised recommendations