Environmental Geochemistry and Health

, Volume 34, Issue 1, pp 43–53 | Cite as

Health effects of ingestion of mercury-polluted urban soil: an animal experiment

  • Ana Luiza Muccillo–Baisch
  • Nicolai Mirlean
  • Daniela Carrazzoni
  • Maria Cristina Flores Soares
  • Gianni Peraza Goulart
  • Paulo Baisch
Original Paper


Rio Grande, the southernmost Brazilian port and industrial center, is marked by mercury-polluted ground cover. This pollution varies spatially, with levels exceeding 1,000 μg kg−1 in 30% of the urban territory. The risk of Hg impact as a result of deliberate and involuntary geophagy is increased by restrained urban conditions in combination with the large proportion of the population living at low-income levels. Laboratory tests have demonstrated that ingestion of Hg-polluted soil by rats results in significant alterations in animal health such as stagnation in body weight increase, and significant mercury accumulation in the liver and kidney. The consumption of Hg-contaminated urban soil also provoked changes in hematological profiles of experimental animals by increasing the number of platelets. The present study indicates the potential for the local population of Rio Grande living in mercury-polluted districts, specifically young children, to experience health disturbances.


Mercury Pollution Urban soil Geophagy Animal tests 



This study was supported by a grant from the Brazilian National Research Council (CNPq).The manuscript has greatly benefited from reviews by anonymous reviewer.


  1. Archer, J. (1973). Test for emotionality in rats and mice: A review. Animal Behavior, 21(2), 205–235.CrossRefGoogle Scholar
  2. Bashir, S., Sharma, Y., Irshad, M., Nag, T. C., & Tiwari, M., et al. (2006) Arsenic induced apoptosis in rat liver following repeated 60 days exposure. Toxicology. doi: 10.1016/j.tox.2005.08.023.
  3. Boening, D. W. (2000). Ecological effects, transport, and fate of mercury: A general review. Chemosphere, 40(12), 1335–1351.CrossRefGoogle Scholar
  4. Calabrese, E. J., & Stanek, E. J. (1992). Distinguishing outdoor soil ingestion from indoor dust ingestion in a soil pica child. Regularory Toxicology and Pharmacology, 15, 83–85.CrossRefGoogle Scholar
  5. Castoldi, A. F., Onishchenko, N., Johansson, C., Coccini, T., Roda, E. & Vahter, M., et al. (2008) Neurodevelopmental toxicity of methylmercury: Laboratory animal data and their contribution to human risk assessment. Regulatory Toxicology and Pharmacology. doi: 10.1016/j.yrtph.2008.03.005.
  6. Charbonneau, S. M., Munro, I. C., Nera, E. A., Willes, R. F., et al. (1974). Subacute toxicity of methylmercury in the adult cat. Toxicology and Applied Pharmacology, 27, 569–581.CrossRefGoogle Scholar
  7. Chuu, J. J., Liu, S. H. & Lin-Shiau, S. Y. (2000). Differential neurotoxic effects of methylmercury and mercuric sulfide in rats. Toxicology Letters. doi: 10.1016/j.toxlet.2006.12.006.
  8. COBEA.Colégio Brasileiro de Experimentação Animal. (1991). Os princípios éticos da experimentação animal. SP: São Paulo.Google Scholar
  9. Edwards, C. H., Johnson, A. A., Knight, E. M., Oyemade, U. J., Cole, O. J., Westney, O. E., et al. (1994). Pica in an urban-environment. Journal of Nutrition, 124, 954–962.Google Scholar
  10. Ersson, B., Lönnerdal, B., & Oskarsson, A. (1999). Protein binding of mercury in milk and plasma from mice and man—a comparison between methylmercury and inorganic mercury. Toxicology, 137, 169–184.CrossRefGoogle Scholar
  11. Finn, D. A., Rutledge-Gorman, M. T. & Crabbe, J. C. (2003). Genetic animal models of anxiety. Neurogenetics, 4, 109–135.Google Scholar
  12. Fossato da Silva, D. A., Teixeira, C. T., Scarano, W. R., Favareto, A. P. A., Fernandez, C. D. B., Grotto, D., Barbosa Jr. F.& Kempinas, W. (2011). Effects of methylmercury on male reproductive functions in Wistar rats. Reproductive Toxicology (in press).Google Scholar
  13. Fukuda, K. (1971). Metallic mercury induced tremor in rabbits and mercury content of the central nervous system. British Journal of Industrial Medicine, 28(3), 308–311.Google Scholar
  14. Gad, S., & Chengelis, C. (1998). Acute Toxicology Testing. Second ed., Academic Press, San Diego. CA: Lange Medical.Google Scholar
  15. Geissler, P. W. (2000). The significance of earth-eating: Social and cultural aspects of geophagy among Luo children. Africa, 70, 653–682.CrossRefGoogle Scholar
  16. Hac,E., Krzyzanowski, M. & Krechniaka, J. (2000). Total mercury in human renal cortex, liver, cerebellum and hair. Science of the Total Environment. doi: 10.1016/S0048-9697(99)00474-X.
  17. Hall, B. D., Bodaly, R. A., Fudge, R. J. P., Rudd, J. W. M., & Rosneberg, D. M. (1997). Food as the dominant pathway of methylmercury uptake by fish. Water, Air, and Soil pollution, 100, 13–24.Google Scholar
  18. Henon, P., Gerota, I., & Caen, J. (1974). Geophagia in Paris. Nouvelle Presse Medicale, 4, 1431.Google Scholar
  19. Inacio, M. M., Pereira, V., & Pinto, M. S. (1998). Mercury contamination in sandy soils surrounding an industrial emission source (Estarreja, Portugal). Geogerma, 85, 325–339.Google Scholar
  20. Jadhav, S. H., Sarkar, S. N., Patil, R. D. & Tripathi, H. C. (2007). Effects of subchronic exposure via drinking water to a mixture of eight water-contaminating metals: a biochemical and histopathological study in male rats. Archives of Environmental Contamination and Toxicology. doi: 10.1007/s00244-007-0031-0.
  21. Johansen, P., Mulvad G., Pedersen H. S., Hansen, J. C. & Riget, F. (2006). Accumulation of cadmium in livers and kidneys in Greenlanders. The Science of the Total Environment. doi: 10.1016/j.scitotenv.2006.08.005.
  22. Joshi, D., Mittal, D. K., Bhadauria, M., Nirala, S. K., Shrivastava, S. & Shukla, S. (2010). Role of micronutrients against dimethylmercury intoxication in male rats. Environmental Toxicology and Pharmacology. doi: 10.1016/j.etap.2009.11.002.
  23. Kishi, R., Hashimoto, K., Shimizu, S., & Kobayashi, M. (1978). Behavioral changes and mercury concentrations in tissues of rats exposed to mercury vapor. Toxicology and Applied Pharmacology, 46(3), 555–566.CrossRefGoogle Scholar
  24. Klein, R., Herman, S. P., Brubaker, P. E., & Krigman, M. R. A. (1972). Model of acute methylmercury intoxication in rats. Archives of Pathology, 93, 408–418.Google Scholar
  25. Lanphear, B. P., & Roghmann, K. L. (1997). Pathways of lead exposure in urban children. Environmental Research, 74, 67–73.CrossRefGoogle Scholar
  26. Lesch, K. P., Zeng, Y., Reif, A. & Gutknecht, L. (2003). Anxiety-related traits in mice with modified genes of the serotoninergic pathway. European Journal of Farmacology. doi: 10.1016/j.ejphar.2003.08.106.
  27. Ljung, K., Selinus, O., Otabbong, E. & Berglund, M. (2006). Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Applied Geochemistry. doi: 10.1016/j.apgeochem.2006.05.005.
  28. Luoba, A. I., Geissler, P. W., Estambale, B., Ouma, J. H., Alusala, D., Ayah, R., et al. (2005). Earth-eating and reinfection with intestinal helminths among pregnant and lactating women in western Kenya. Tropical Medicine and International Health, 10, 220–227.CrossRefGoogle Scholar
  29. Magos, L. (1982). Neurotoxicity, anorexia and the preferential choice of antidote in methylmercury intoxicated rats. Neurobehavioral Toxicology and Teratology, 4(6), 643–646.Google Scholar
  30. Maurice-Bourgoin, L., Quiroga, I., Chincheros, J., & Courau, P. (2000). Mercury distribution in waters and fishes of the upper Madeira rivers and mercury exposure in riparian Amazonian populations. Science of the Total Environment, 260, 73–86.CrossRefGoogle Scholar
  31. Mills, A. & Milewski, A. (2006). Geophagy and nutrient supplementation in the Ngorongoro Conservation Area, Tanzania, with particular reference to selenium, cobalt and molybdenum. Journal of Zoology. doi: 10.1111/j.1469-7998.2006.00241.x.
  32. Mirlean, N. & Oliveira, C. (2006). Mercury in coastal reclamation fills in southernmost Brazil: historical and environmental facets. Journal of Coastal Research. doi: 10.2112/04-0352.1.
  33. Moya, J., Bearer, C. F., & Etzel, R. A. (2004). Children’s behavior and physiology and how it affects exposure to environmental contaminants. Pediatrics, 113, 996–1006.Google Scholar
  34. Munro, I. C., Nera, S. M., Charbonneau, S. M., Junkins, B., & Zawidzka, Z. (1980). Chronic toxicity of methylmercury in the rat. Journal of Environmental Pathology and Toxicology, 3, 437–447.Google Scholar
  35. Oliver, M. A. (1997). Soil and human health: A review. European Journal of Soil Science, 4, 8573–8592.Google Scholar
  36. Pellow, S., Chopin, P., File, S., & Briley, M. (1985). Validation of open/closed arms entries in an elevated plus maze as a measure of anxiety in the rats. Journal of Neuroscience Methods, 14, 149–167.CrossRefGoogle Scholar
  37. Shaw, B. P., Dash, S., & Panigrahi, A. K. (1991). Effects of methyl mercuric chloride treatment on hematological characteristics and erythrocyte morphology of Swiss mice. Environmental Pollution, 72, 43–52.CrossRefGoogle Scholar
  38. Sheppard, S. C. (1995). A model to predict concentration enrichment of contaminants on soil adhering to plants and skin. Environmental Geochemistry and Health, 17, 13–20.CrossRefGoogle Scholar
  39. Sheppard, S. C., Evenden, W. G., & Schwartz, W. J. (1995). Ingested soil: Bioavailability of sorbed lead, cadmium, cesium, iodine, and mercury. Journal of Environmental Quality, 24, 498–505.CrossRefGoogle Scholar
  40. Shidu, P. M. L., Morgenstern, P., Vogt, J., Butz, T., & Dhawan, D. K. (2005). Ineffectiveness of nickel in augmentation the hepatotoxicity in protein deficient rats. Nutrition Hospital, 20, 378–385.Google Scholar
  41. Simon, S. L. (1998). Soil ingestion by humans: A review of history, data, and etiology with application to risk assessment of radioactively contaminated soil. Health Physics, 74, 647–672.CrossRefGoogle Scholar
  42. Smith, B., Rawlins, B. G., Cordeiro, M. J. A. R., Hutchins, M. G., Sserunjogi, L., & Tomkins, A. M. (2000). The bio-accessibility of essential and potentially toxic trace elements in tropical soils from Mukono District, Uganda. Journal of the Geological Society, 157, 885–891.CrossRefGoogle Scholar
  43. U.S. EPA (1996). Exposure Factors Handbook. Washington, DC:U.S. Environmental Protection Agency. Accessed 22 July 2010.
  44. Valko, M., Morris, H., & Cronin, M. (2005). Metals, toxicity and oxidative stress. Current Medical Chemistry, 12, 1161–1208.CrossRefGoogle Scholar
  45. Valko, M., Rhodes, C. J., Monco,l. J., Izakovic, M. & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions. doi: 10.1016/j.cbi.2005.12.009.
  46. Verschuuren, H. G., Kroes, R., Engelina, M., Tonkelaar, D., et al. (1976a). Toxicity of methylmercury chloride in rats I. Short-term study. Toxicology, 6, 85–96.CrossRefGoogle Scholar
  47. Verschuuren, H. G., Kroes, R., Engelina, M., Tonkelaar, D., et al. (1976b). Toxicology of methylmercury chloride in rats II. Reproduction study. Toxicology, 6, 97–106.CrossRefGoogle Scholar
  48. Verschuuren, H. G., Kroes, R., Engelina, M., Tonkelaar, D., et al. (1976c). Toxciology of methylmercury chloride in rats III. Long term toxicity study. Toxicology, 6, 107–123.CrossRefGoogle Scholar
  49. WHO (Organization). (1978). Mercury. (Environmental health criteria, n.1). WHO: World Health Geneva.Google Scholar
  50. Yamamoto, R., Suzuki, T., Satoh, H., & Kawai, K. (1986). Generation and dose as modifying factors of inorganic mercury accumulation in brain, liver, and kidneys of rats fed methylmercury. Environmental Research, 41, 309–318.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ana Luiza Muccillo–Baisch
    • 1
  • Nicolai Mirlean
    • 2
  • Daniela Carrazzoni
    • 1
  • Maria Cristina Flores Soares
    • 1
  • Gianni Peraza Goulart
    • 1
  • Paulo Baisch
    • 2
  1. 1.Laboratory of Pharmacology and Toxicological AssaysInstitute of Biology Science, Federal University of Rio GrandeRio GrandeBrazil
  2. 2.Oceanography Institute, Laboratory of Geological OceanographyFederal University of Rio GrandeRio Grande do SulBrazil

Personalised recommendations