Environmental Geochemistry and Health

, Volume 33, Supplement 1, pp 13–22 | Cite as

Abiotic subsurface behaviors of As(V) with Fe(II)

  • Sang-Hun Lee
  • Woosik Jung
  • Byong-Hun Jeon
  • Jae-Young Choi
  • Sunjoon Kim
Original Paper


Subsurface geochemical behavior of As(V) with Fe(II) was studied under strict anoxic conditions. Abiotic reduction of As(V) (0.1 mM) to As(III) by aqueous Fe(II) and sorbed Fe(II) in pH range 5.0–7.0 and Fe(II)aq concentration (0.6–1.2 mM) was investigated along with the effect of As(V) on the oxidation of Fe(II) by dissolved oxygen (DO). Although the reduction was thermodynamically feasible for homogeneous chemical conditions, practically no As(V) reduction by aqueous Fe(II) was observed. Similarly, no sorbed As(V) reduction was observed under the heterogeneous experimental conditions by sorbed Fe(II) onto synthetic iron oxide (hematite, α-Fe2O3). Experimental results on Fe(II) oxidation by DO in the presence of 0.1 mM As(V) showed a significantly slower Fe(II) oxidation, which might be due to the formation of Fe(II)–As(V) complex in the aqueous phase. The results of this study demonstrate that As(V) is relatively stable in the presence of Fe(II) under subsurface environment and interfere the oxidation of Fe(II).


Groundwater Ferrous Arsenate Abiotic reduction 



This research was supported by Korea Mine Reclamation Corporation, 21st Frontier research project (Sustainable Water Resources Research Center 3-4-3), Korea Research Foundation Grant funded by the Korean Government (KRF-D0028), and Global Research Laboratory project (Korea Institute of Geosciences and Mineral Resources NP2008-019).


  1. Agency for Toxic Substances and Disease Registry (ATSDR) (2007). Toxicological profile for Arsenic. U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA.
  2. Agency for Toxic Substances and Disease Registry (ATSDR) (2009). Case studies in environmental medicine. Arsenic toxicity. U.S. Public Health Service, U.S. Department of Health and Human Services, Altanta, GA.
  3. Ahn, J. S., Ko, K. S., Lee, J. S., & Kim, J. Y. (2005). Characteristics of natural Arsenic contamination in groundwater and its occurrences. Economic and Environmental Geology, 38(5), 547–561.Google Scholar
  4. Bang, S. B., Choe, E. Y., & Kim, K. Y. (2005). Treatment technologies for Arsenic removal from groundwater: Review paper. Economic and Environmental Geology, 38(5), 599–606.Google Scholar
  5. Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., & Giger, W. (2001). Arsenic contamination of groundwater and drinking water in Vietnam: A human health threat. Environmental Science and Technology, 35(13), 2621–2626.CrossRefGoogle Scholar
  6. Chakraborti, D., Samanta, G., Mandal, B. K., Chowdhury, T. R., Chanda, C. R., Biswas, B. K., et al. (1998). Calcutta’s industrial pollution: Groundwater arsenic contamination in a residential area and suffering of people due to industrial effluent discharge—an eight-year study report. Current Science, 74(4), 346–355.Google Scholar
  7. Charlet, L., Bosbach, D., & Peretyashko, T. (2002). Natural attenuation of TCE, As, Hg linked to the heterogeneous oxidation of Fe(II): An AFM study. Chemical Geology, 190(1/4), 303–319.CrossRefGoogle Scholar
  8. Cheng, Z., van Geen, A., Seddique, A. A., & Ahmed, K. M. (2005). Limited temporal variability of arsenic concentrations in 20 wells monitored for 3 years in Araihazar, Bangladesh. Environmental Science and Technology, 39(13), 4759–4766.CrossRefGoogle Scholar
  9. Dhar, R. K., Biswas, B. K., Samanta, G., & Mandel, B. (1997). Groundwater Arsenic calamity in Bangladesh. Current Science, 73(1), 48–59.Google Scholar
  10. Dixit, S., & Hering, J. G. (2003). Comparison of Arsenic(V) and Arsenic(III) sorption onto iron oxide minerals: Implication for arsenic mobility. Environmental Science and Technology, 37(18), 4182–4189.CrossRefGoogle Scholar
  11. Duff, M. C., Coughlin, J. U., & Hunter, D. B. (2002). Uranium co-precipitation with iron oxide minerals. Geochimica et Cosmochimica Acta, 66(20), 533–3547.CrossRefGoogle Scholar
  12. Fendorf, S. E., & Li, G. (1996). Kinetics of chromate reduction by ferrous iron. Environmental Science and Technology, 30(5), 1614–1617.CrossRefGoogle Scholar
  13. Fredrickson, J. K., Zachara, J. M., Kennedy, D. W., Kukkadapu, R. K., McKinley, J. P., Heald, S. M., et al. (2004). Reduction of TcO4 by sediment-associated biogenic Fe(II). Geochimica et Cosmochimica Acta, 68(15), 3171–3187.CrossRefGoogle Scholar
  14. Hering, J. G., Chen, P. Y., Wilkie, J. A., & Elimelech, M. (1997). Arsenic removal from drinking water during coagulation. Journal of Environmental Engineering, 123(8), 800–808.CrossRefGoogle Scholar
  15. Jeon, B. H., Dempsey, B. A., & Burgos, W. D. (2003). Kinetics and mechanisms for reactions of Fe(II) with iron(III) oxides. Environmental Science and Technology, 37(15), 3309–3315.CrossRefGoogle Scholar
  16. Jeon, B. H., Dempsey, B. A., Burgos, W. D., Barnett, M. O., & Roden, E. E. (2005). Chemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides. Environmental Science and Technology, 39(15), 5642–5649.CrossRefGoogle Scholar
  17. Jeon, B. H., Dempsey, B. A., Burgos, W. D., & Royer, R. A. (2001). Reactions of ferrous iron with hematite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191(1/2), 41–55.CrossRefGoogle Scholar
  18. Jeon, B. H., Dempsey, B. A., Royer, R. A., & Burgos, W. D. (2004). Low-temperature oxygen trap for maintaining strict anoxic conditions. Journal of Environmental Engineering, 130(11), 1407–1410.CrossRefGoogle Scholar
  19. Johnston, R. B., & Singer, P. C. (2007a). Solubility of symplesite (ferrous arsenate): Implications for reduced groundwaters and other geochemical environments. Soil Science Society of America Journal, 71(1), 101–107.CrossRefGoogle Scholar
  20. Johnston, R. B., & Singer, P. C. (2007b). Redox reactions in the Fe-As-O2 system. Chemosphere, 69(4), 517–525.CrossRefGoogle Scholar
  21. Liger, E., Charlet, L., & Van Cappellen, P. (1999). Surface catalysis of uranium(VI) reduction by iron(II)—spectroscopic evidence for sorption and reduction. Geochimica et Cosmochimica Acta, 63(19/20), 2939–2955.CrossRefGoogle Scholar
  22. Luther, G. W. (1987). Pyrite oxidation and reduction: Molecular orbital theory considerations. Geochimica et Cosmochimica Acta, 51(12), 3193–3199.CrossRefGoogle Scholar
  23. Meng, X. G., & Wang, W. (1998). Speciation of arsenic by disposable cartridges. In Book of posters of the third international conference on arsenic exposure and health effects. Society of Environmental Geochemistry and Health, University of Colorado at Denver, Denver, CO.Google Scholar
  24. Pourbaix, M. (1966). Atlas of electrochemical equilibria. Oxford: Pergamon Press.Google Scholar
  25. Refait, P., Girault, P., Jeannin, M., & Rose, J. (2009). Influence of arsenate species on the formation of Fe(III) oxyhydroxides and Fe(II–III) hydroxychloride. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 332(1), 26–35.CrossRefGoogle Scholar
  26. Ryu, J. I.-h, Gao, S., Dahlgren, R. A., & Zierenberg, R. A. (2002). Arsenic distribution, speciation and solubility in shallow groundwater of Owens Dry Lake, California. Geochimica et Cosmochimica Acta, 66(17), 2981–2994.CrossRefGoogle Scholar
  27. Sedlak, D. L., & Chan, P. G. (1997). Reduction of hexavalent chromium by ferrous iron. Geochimica et Cosmochimica Acta, 61(11), 2185–2192.CrossRefGoogle Scholar
  28. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.CrossRefGoogle Scholar
  29. Stumm, W., & Morgan, J. J. (1996). Aquatic chemistry (3rd edn ed.). New York: Wiley.Google Scholar
  30. Stumm, W., & Sulzberger, B. (1992). The cycling of iron in natural environments: Considerations based on laboratory studies of heterogeneous redox processes. Geochimica et Cosmochimica Acta, 56(8), 3233–3257.CrossRefGoogle Scholar
  31. Thoral, S., Rose, J., Garnier, J. M., van Geen, A., Refait, P., Traverse, A., et al. (2005). XAS study of Iron and Arsenic speciation during Fe(II) oxidation in the presence of As(III). Environmental Science and Technology, 39(24), 9478–9485.CrossRefGoogle Scholar
  32. Yi, J. S., Lee, J. M., & Chon, H. T. (2003). Chemical speciation of Arsenic in the water system from some abandoned Au-Ag mines in Korea. Economic and Environmental Geology, 36(6), 481–490.Google Scholar
  33. Zachara, J. M., Heald, S. M., Jeon, B. H., Kukkadapu, R. K., Liu, C., Mckinley, J. P., et al. (2007). Reduction of pertechnetate [Tc(VII)] by aqueous Fe(II) and the nature of solid phase redox products. Geochimica et Cosmochimica Acta, 71(9), 2137–2157.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sang-Hun Lee
    • 1
  • Woosik Jung
    • 2
  • Byong-Hun Jeon
    • 2
  • Jae-Young Choi
    • 3
  • Sunjoon Kim
    • 1
  1. 1.Department of Natural Resources and Environmental EngineeringHanyang UniversitySeoulSouth Korea
  2. 2.Department of Environmental EngineeringYonsei UniversityWonju, Gangwon-doSouth Korea
  3. 3.Environmental Remediation Group, Korea Institute of Science and Technology (KIST)Gangneung InstituteGangneung, Gangwon-doSouth Korea

Personalised recommendations