Environmental Geochemistry and Health

, Volume 33, Supplement 1, pp 143–149 | Cite as

Screening of Cucumis sativus as a new arsenic-accumulating plant and its arsenic accumulation in hydroponic culture

  • Sun Hwa Hong
  • Sun Ah Choi
  • Hyeon Yoon
  • Kyung-Suk Cho
Original Paper


Phytoextraction is a remediation technology with a promising application for removing arsenic (As) from soils and waters. Several plant species were evaluated for their As accumulation capacity in hydroponic culture amended with As. Cucumis sativus (cucumber) displayed the highest tolerance against As among 4 plants tested in this study (corn, wheat, sorghum and cucumber). The germination ratio of Cucumis sativus was more than 50% at the high concentration of 5,000 mg-As/l. In Cucumis sativus grown in a solution contaminated with 25 mg-As/l, the accumulated As concentrations in the shoot and root were 675.5 ± 11.5 and 312.0 ± 163.4 mg/kg, respectively, and the corresponding values of the translocation and bioaccumulation factors for As were 1.9 ± 0.9 and 21.1 ± 8.4, respectively. These results indicate Cucumis sativus is to be a candidate plant for phytoextraction of As from soils and water.


Arsenic Bioaccumulation Cucumber Cucumis sativus Phytoremediation 



This research was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (KRF-2008-C00388). Sun Ah Choi was financially supported through NRL program (R0A-2008-000-20044-0) by the NRF, MEST.


  1. An, Y. J. (2004). Soil ecotoxicity assessment using cadmium sensitive plant. Environmental Pollution, 127, 21–26.CrossRefGoogle Scholar
  2. Burló, F., Guijarro, I., Carbonell-Barrachina, A. A., Valero, D., & Martinez-Sánchez, F. (1999). Arsenic species: effects on and accumulation by tomato plants. Journal of Agricultural Food and Chemistry, 47, 1247–1253.CrossRefGoogle Scholar
  3. Carbonell-Barrachina, A. A., Aarabi, M. A., DeLaune, R. D., Gambrell, R. P., & Patrick, W. H. (1998). The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant and Soil, 198, 33–43.CrossRefGoogle Scholar
  4. Chintakovid, W., Visoottiviseth, P., Khokiattiwong, S., & Lauengsuchonkul, S. (2008). Potential of the hybrid marigolds for arsenic phytoremediation and income generation of remediators in Ron Phibun District, Thailand. Chemosphere, 70, 1532–1537.CrossRefGoogle Scholar
  5. Chopra, B. K., Bhat, S., Mikheenko, I. P., Xu, Z., Yang, Y., Luo, X., et al. (2007). The characteristics of rhizosphere microbes associated with plants in arsenic-contaminated soils from cattle dip sites. Science of the Total Environment, 378, 331–342.CrossRefGoogle Scholar
  6. Fayiga, A. O., Ma, L. Q., Santoa, J., Rathinasabapathi, B., Stamps, B., & Littell, R. C. (2005). Effects of arsenic species and concentrations on arsenic accumulation by different fern species in a hydroponic system. International Journal of Phytoremediation, 7, 231–240.CrossRefGoogle Scholar
  7. Fitz, W. J., & Wenzel, W. W. (2002). Arsenic transformations in the soil-rhizosphere plant system: Fundamentals and potential application to phytoremediation. Journal of Biotechnology, 99, 259–278.CrossRefGoogle Scholar
  8. Francesconi, K. A., & Kuehnelt, D. (2002). Arsenic compound in the environment. In W. T. Frankenberger Jr (Ed.), Environmental chemistry of arsenic (pp. 51–94). New York: Marcel Dekker.Google Scholar
  9. Francesconi, K., Visoottiviseth, P., Sridokchan, W., & Goessler, W. (2002). Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos, a potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment, 284, 27–35.CrossRefGoogle Scholar
  10. Gisbert, C., Almela, C., Vélez, D., López-Moya, J. R., Haro, A., Serrano, R., et al. (2008). Identification of as accumulation plant species growing on highly contaminated soils. International Journal of Phytoremediation, 10, 185–196.CrossRefGoogle Scholar
  11. Haque, N., Peralta-Videa, J. R., Jones, G. L., Gill, T. E., & Gardea-Torresdey, J. L. (2007). Screening the phytoremediation potential of desert broom (Baccharis sarothroides Gray) growing on mine tailings in Arizona, USA. Environmental Pollution, 153, 362–368.CrossRefGoogle Scholar
  12. Kertulis-Tartar, G. M., Ma, L. Q., Tu, C., & Chirenje, T. (2006). Phytoremediation of an arsenic-contaminated site using Pteris vittata: A two-year study. International Journal of Phytoremediationion, 8, 311–322.CrossRefGoogle Scholar
  13. Ma, L. Q., Komar, K. M., Zhang, W., Cai, Y., & Kennelley, E. D. (2001). A fern that hyper accumulates arsenic. Nature, 409, 579.CrossRefGoogle Scholar
  14. Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., et al. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceedings of the National Academy of Sciences, USA, 105, 9931–9935.CrossRefGoogle Scholar
  15. Mandal, B. K., & Suzuki, K. T. (2002). Arsenic around the world: A review. Talanta, 58, 201–235.CrossRefGoogle Scholar
  16. Marin, A. R., Masscheleyn, P. H., & Patrick, W. H. (1992). The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant and Soil, 139, 175–183.CrossRefGoogle Scholar
  17. Marques, A. P. G. C., Moreira, H., Rangel, A. O. S. S., & Castro, P. M. L. (2008). Arsenic, lead and nickel accumulation in Rubus ulmifolius growing in contaminated soil in Portugal. Journal of Hazardous Materials, 165, 174–179.CrossRefGoogle Scholar
  18. McGrath, S. P., Chaudri, A. M., & Giller, K. E. (1995). Long-term effects of metals in sewage sludge on soils, microorganisms and plants. Journal of Industrial Microbiology & Biotechnology, 14, 94–104.Google Scholar
  19. Meharg, A. A., & Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154, 29–43.CrossRefGoogle Scholar
  20. Melo, E. E. C., Costa, E. T. S., Guilhermea, L. R. G., Faquina, V., & Nascimentob, C. W. A. (2009). Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution. Journal of Hazardous Materials, 168, 479–483.CrossRefGoogle Scholar
  21. Mihucz, V. G., Tatar, E., Virag, I., Cseh, E., Fodor, F., & Zaray, G. (2005). Arsenic speciation in xylem sap of cucumber (Cucumis sativus L.). Analytical and Bioanalytical Chemistry, 383, 461–466.CrossRefGoogle Scholar
  22. Pickering, I. J., Prince, R. C., George, M. J., Smith, R. D., George, G. N., & Salt, D. E. (2000). Reduction and coordination of arsenic in Indian mustard. Plant Physiology, 122, 1171–1177.CrossRefGoogle Scholar
  23. Rahman, M. A., Hasegawa, H., Ueda, K., Maki, O. C., & Rahman, M. M. (2007). Arsenic accumulation in duckweed (Spirodela polyrhiza L.): A good option for phytoremediation. Chemosphere, 69, 493–499.CrossRefGoogle Scholar
  24. Rajkumar, M., Nagendran, R., Lee, K. J., Lee, W. H., & Kim, S. Z. (2005). Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard. Chemosphere, 62, 741–748.CrossRefGoogle Scholar
  25. Robinson, B., Kim, N., Marchetti, M., Moni, C., Schroeter, L., Dijssel, C. V. D., et al. (2006). Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environmental and Experimental Botany, 58, 206–215.CrossRefGoogle Scholar
  26. Ruby, M. V., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.CrossRefGoogle Scholar
  27. Sracek, O., Bhattacharya, P., Jacks, G., Gustafsson, J. P., & von Bromeesn, M. (2004). Behavior of arsenic and geochemical modeling of arsenic enrichment in aqueous environments. Applied Geochemistry, 19, 169–180.CrossRefGoogle Scholar
  28. Su, Y. H., McGrath, S. P., Zhu, Y. G., & Zhao, F. J. (2008). Highly efficient xylem transport of arsenite in the arsenic hyperaccumulator Pteris vittata. New Phytologist, 180, 434–441.CrossRefGoogle Scholar
  29. Sun, Y., Zhou, Q., & Diao, C. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology, 99, 1103–1110.CrossRefGoogle Scholar
  30. Tu, S., Ma, L. Q., & Bondada, B. (2002). Arsenic accumulation in the hyperaccumulator Chinese Brake and its utilisation potential for phytoremediation. Journal of Environmental Quality, 31, 1671–1675.CrossRefGoogle Scholar
  31. Tu, C., Ma, L. Q., & Luongo, T. (2004). Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant and Soil, 258, 9–19.CrossRefGoogle Scholar
  32. Wei, C. Y., Wang, C., & Sun, X. (2007). Arsenic accumulation by ferns: A field survey in southern china. Environmental Geochemistry and Health, 29, 169–177.CrossRefGoogle Scholar
  33. Xu, X. Y., McGrath, S. P., Meharg, A., & Zhao, F. J. (2007). Growing rice aerobically markedly decreases arsenic accumulation. Environmental Science and Technology, 42, 5574–5579.CrossRefGoogle Scholar
  34. Zabłudowska, E., Kowalska, J., Jedynak, L., Wojas, S., Skłodowska, A., & Antosiewicz, D. M. (2009). Search for a plant for phytoremediation–What can we learn from field and hydroponic studies? Chemosphere, 77, 301–307.CrossRefGoogle Scholar
  35. Zhao, R., Zhao, M., Wang, H., Taneike, Y., & Zhang, X. (2006). Arsenic speciation in moso bamboo shoot–a terrestrial plant that contains organoarsenic species. Science of the Total Environment, 371, 293–303.CrossRefGoogle Scholar
  36. Zhao, F. J., Ma, J. F., Meharg, A. A., & McGrath, S. P. (2009). Arsenic uptake and metabolism in plants. New Phytologist, 181, 777–794.CrossRefGoogle Scholar
  37. Zhu, Y. G., & Rosen, B. P. (2009). Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: From imagination to reality? Current Opinion in Biotechnology, 20, 220–224.CrossRefGoogle Scholar
  38. Zhu, Y. G., Williams, P. N., & Meharg, A. A. (2008). Exposure to inorganic arsenic from rice: A global issue. Environmental Pollution, 154, 169–171.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Sun Hwa Hong
    • 1
  • Sun Ah Choi
    • 1
  • Hyeon Yoon
    • 2
  • Kyung-Suk Cho
    • 1
  1. 1.Department of Environmental Science and EngineeringEwha Womans UniversitySeoulRepublic of Korea
  2. 2.Korea Basic Science InstituteSeoulRepublic of Korea

Personalised recommendations