Environmental Geochemistry and Health

, Volume 33, Issue 5, pp 455–468 | Cite as

Indoor air quality in elementary schools of Lisbon in spring

  • P. N. Pegas
  • C. A. Alves
  • M. G. Evtyugina
  • T. Nunes
  • M. Cerqueira
  • M. Franchi
  • C. A. Pio
  • S. M. Almeida
  • M. C. Freitas
Original Paper


Analysis of indoor air quality (IAQ) in schools usually reveals higher levels of pollutants than in outdoor environments. The aims of this study are to measure indoor and outdoor concentrations of NO2, speciated volatile organic compounds (VOCs) and carbonyls at 14 elementary schools in Lisbon, Portugal. The investigation was carried out in May–June 2009. Three of the schools were selected to also measure comfort parameters, such as temperature and relative humidity, carbon dioxide (CO2), carbon monoxide (CO), total VOCs, and bacterial and fungal colony-forming units per cubic metre. Indoor concentrations of CO2 in the three main schools indicated inadequate classroom air exchange rates. The indoor/outdoor (I/O) NO2 ratio ranged between 0.36 and 0.95. At the three main schools, the total bacterial and fungal colony-forming units (CFU) in both indoor and outdoor air were above the advised maximum value of 500 CFU/m3 defined by Portuguese legislation. The aromatic compounds benzene, toluene, ethylbenzene and xylenes, followed by ethers, alcohols and terpenes, were usually the most abundant classes of VOCs. In general, the indoor total VOC concentrations were markedly higher than those observed outdoors. At all locations, indoor aldehyde levels were higher than those observed outdoors, particularly for formaldehyde. The inadequate ventilation observed likely favours accumulation of pollutants with additional indoor sources.


Carbon dioxide Carbon monoxide Carbonyls Indoor air quality Nitrogen dioxide Schools Volatile organic compounds 



This project was financially supported by Fundação para a Ciência e a Tecnologia (FCT) through the PTDC/SAU-ESA/65597/2006 project. Priscilla N. Pegas thanks FCT for the Ph.D. scholarship (SFRH/BD/45233/2008). The authors would also like to thank principals, staff and students for their support.


  1. ANSI/ASHRAE Standard 62-1999. (1999). Ventilation for acceptable indoor air quality, Atlanta: American society of heating, refrigerating, and air-conditioning engineers, Inc.Google Scholar
  2. ANSI/ASHRAE Standard 55–2004. (2004). Thermal environmental conditions for human occupancy, American society of heating, refrigerating and air-conditioning engineers, Inc. Atlanta, GA.Google Scholar
  3. Bhugwant, C., & Hoareau, J. (2003). Variability of NO2 in different environments at a moderately polluted island over the southwestern Indian Ocean. Atmospheric Research, 66, 241.CrossRefGoogle Scholar
  4. Blondeau, P., Iordache, V., Poupard, O., Genin, D., & Allard, F. (2005). Relationship between outdoor and indoor air quality in eight French schools. Indoor Air, 15, 2–12.CrossRefGoogle Scholar
  5. Borrego, C., Tchepel, O., Barros, N., & Miranda, A. I. (2000). Impact of road traffic emissions on air quality of the Lisbon region. Atmospheric Environment, 34, 4683–4690.CrossRefGoogle Scholar
  6. Bruno, P., Caselli, M., de Gennaro, G., Iacobellis, S., & Tutino, M. (2008). Monitoring of volatile organic compounds in non-residential indoor environments. Indoor Air, 18, 250–256.CrossRefGoogle Scholar
  7. Chaloulakou, A., Mavroidis, I., & Duci, A. (2003). Indoor and outdoor carbon monoxide concentration relationships at different microenvironments in the Athens area. Chemosphere, 52, 1007–1019.Google Scholar
  8. Chew, G. L., Correa, J. C., & Perzanowski, M. S. (2005). Mouse and cockroach allergens in the dust and air in northeastern United States inner-city public high schools. Indoor Air, 15, 228–234.CrossRefGoogle Scholar
  9. Cocheo, V., Boaretto, C., & Sacco, P. (1996). High uptake rate radial diffusive sampler suitable for booth solvent an thermal desorption. American Industrial Hygiene Association Journal, 57, 897–904.Google Scholar
  10. Daisey, J. M., Angell, W. J., & Apte, M. G. (2003). Indoor air quality, ventilation and health symptoms in schools: an analysis of existing information. Indoor Air, 13, 53–64.CrossRefGoogle Scholar
  11. Dingle, P., & Franklin, P. (2002). Formaldehyde levels and the factors affecting these levels in homes in Perth, Western Australia. Indoor and Built Environment, 11, 111–116.Google Scholar
  12. Finnigan, M. S., Pickering, C. A. C., & Burge, P. S. (1984). The sick building syndrome: Prevalence studies. British Medical Journal, 289, 1573–1575.CrossRefGoogle Scholar
  13. Fisk, W. J. (2001). Estimates of potential nationwide productivity and health benefits from better indoor environments: An update. In J. Spengler, J. M. Samet, & J. F. McCarthy (Eds.), Indoor air quality handbook (pp. 1–36). New York: McGraw Hill.Google Scholar
  14. Godoi, R., Avigo, D., Jr, Campos, V., Tavares, T., de Marchi, M., Grieken, R., et al. (2009). Indoor air quality assessment of elementary schools in Curitiba, Brazil. Water, Air, Soil Pollution, 9, 171–177.CrossRefGoogle Scholar
  15. Godwin, C., & Batterman, S. (2007). Indoor air quality in Michigan schools. Indoor Air, 17, 109–121.CrossRefGoogle Scholar
  16. Gonçalves, F. L. T., Bauer, H., Cardoso, M. R. A., Pukinskas, S., Matos, D., Melhem, M., et al. (2010). Indoor and outdoor atmospheric fungal spores in the Sao Paulo metropolitan area (Brazil): Species and numeric concentrations. International Journal of Biometeorology, 54, 347–355.CrossRefGoogle Scholar
  17. Griffiths, M., & Eftekhari, M. (2008). Control of CO2 in a naturally ventilated classroom. Energy and Buildings, 40, 556–560.CrossRefGoogle Scholar
  18. Guieysse, B., Hort, C., Platel, V., Munoz, R., Ondarts, M., & Revah, S. (2008). Biological treatment of indoor air for VOC removal: Potential and challenges. Biotechnology Advance, 26(5), 398–410.CrossRefGoogle Scholar
  19. Hodgson, M. (1992). Field studies on the sick building syndrome. Annals of the New York Academy of Sciences, 641, 21–36.CrossRefGoogle Scholar
  20. Hodgson, A. T., Shendell, D. G., Fisk, W. J., & Spte, M. G. (2004). Comparison of predicted and derived measures of volatile organic compounds inside four new relocatable classrooms. Indoor Air, 14, 135–144.CrossRefGoogle Scholar
  21. Jo, W. K., & Seo, Y. J. (2005). Indoor and outdoor bioaerosol levels at recreation facilities, elementary schools, and homes. Chemosphere, 61, 1570–1579.CrossRefGoogle Scholar
  22. Jones, A. Y. M., & Lam, P. K. W. (2006). End-expiratory carbon monoxide levels in healthy subjects living in a densely populated urban environment. Science of the Total Environment, 354, 150–156.CrossRefGoogle Scholar
  23. Khan, I., Freitas, M. C., Dionísio, I., & Pacheco, A. (2007a). Particulate matter levels in Portugal (Mainland and Islands)—A preliminary study for outdoor/indoor environ ment in basic schools, Proceedings of the Ninth REHVA World Congress Clima 2007 “WellBeing Indoors”, Helsinki, Finland.Google Scholar
  24. Khan, I., Freitas, M. C., & Pacheco, A. (2007b). Indoor habits of children aged 5–10 years learning at the public basic schools of Lisbon-City, Portugal, Proceedings of the Ninth REHVA World Congress Clima 2007 “WellBeing Indoors”, Helsinki, Finland.Google Scholar
  25. Kim, J. L., Elfman, L., Mi, Y., Wieslander, G., Smedje, G., & Norbäck, D. (2007). Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools–associations with asthma and respiratory symptoms in pupils. Indoor Air, 17, 153–163.CrossRefGoogle Scholar
  26. Klinmalee, A., Srimongkol, K., & Oanh, N. T. K. (2009). Indoor air pollution levels in public buildings in Thailand and exposure assessment. Environment Monitoring Assessment, 156, 581–594.CrossRefGoogle Scholar
  27. Kotzias, D., Geiss, O., Tirendi, S., Barrero-Moreno, J., Reina, V., & Gotti, A. (2009). Exposure to multiple air contaminants in public buildings, schools and kindergartens—the European indoor air monitoring and exposure assessment (AIRMEX) study. Fresenius Environmental Bulletin, 18(5a), 670–681.Google Scholar
  28. Kotzias, D., Koistinen, K., Kephalopoulos, S., Schlitt, C., Carrer, P., Maroni, M., et al. (2005). The INDEX project: Critical appraisal of the setting and implementation of indoor exposure limits in the EU. Final Report, EUR 21590 EN.Google Scholar
  29. Kraft, M., Eikmann, T., Kappos, A., Künzli, N., Rapp, R., Schneider, K., et al. (2005). The German view: Effects of nitrogen dioxide on human health—derivation of health-related short-term and long-term values. International Journal of Hygiene and Environmental Health, 208, 305–318.CrossRefGoogle Scholar
  30. Lee, S. C., & Chang, M. (2000). Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere, 41, 109–113.CrossRefGoogle Scholar
  31. Lee, S. C., Ho, K. F., Chan, L. Y., Zielinska, B., & Chow, J. C. (2001a). Polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds in urban atmosphere of Hong Kong. Atmospheric Environment, 35, 5949–5960.CrossRefGoogle Scholar
  32. Lee, S. C., Li, W. M., & Chan, L. Y. (2001b). Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong. Science of the Total Environment, 279, 181–193.CrossRefGoogle Scholar
  33. Lee, S. C., Guo, H., Li, W. M., & Chan, L. Y. (2002a). Inter-comparison of air pollutant concentrations in different indoor environment in Hong Kong. Atmospheric Environment, 36, 1929–1940.CrossRefGoogle Scholar
  34. Lee, S. C., Li, W. M., & Ao, C. H. (2002b). Investigation of indoor air quality at residential homes in Hong Kong—case study. Atmospheric Environment, 36, 225–237.CrossRefGoogle Scholar
  35. Li, W. M., Lee, S. C., & Chan, L. Y. (2001). Indoor air quality at nine shopping malls in Hong Kong. Science of the Total Environment, 273, 27–40.CrossRefGoogle Scholar
  36. Lovreglio, P., Carrus, A., Iavicoli, S., Drago, I., Persechino, B., & Soleo, L. (2009). Indoor formaldehyde and acetaldehyde levels in the province of Bari, South Italy, and estimated health risk. Journal of Environmental Monitoring, 11, 955–961.CrossRefGoogle Scholar
  37. Madureira, J., Alvim-Ferraz, M. C. M., Rodrigues, S., Gonçalves, C., Azevedo, M. C., Pinto, E., et al. (2009). Indoor air quality in schools and health symptoms among Portuguese teacher. Human and Ecological Risk Assessment, 15, 159–169.CrossRefGoogle Scholar
  38. May, K., & Harper, G. (1957). The efficiency of various liquid impinger samplersin bacterial aerosols. Journal of Industrial Medical, 14, 287.Google Scholar
  39. Meklin, T., Husman, T., Vepsäläinen, A., Vahteristo, M., Koivisto, J., Halla-Aho, J., et al. (2002). Indoor air microbes and respiratory symptoms of children on moisture damaged and reference schools. Indoor Air, 12, 175–183.CrossRefGoogle Scholar
  40. Mendell, M. J. (2007). Indoor residential chemical emissions as risk factors for respiratory and allergic effects in children: A review. Indoor Air, 17, 259–277.CrossRefGoogle Scholar
  41. Mentese, S., Arisoy, M., Rad, A. Y., & Güllü, G. (2009). Bacteria and fungi levels in various indoor and outdoor environments in Ankara, Turkey. Clean-Soil, Air Water, 37, 487–493.CrossRefGoogle Scholar
  42. Mines, M. D. (1997). The heme oxygenase system: A regulator of second messenger gases. Annual Review Pharmacology and Toxicology, 37, 517–554.CrossRefGoogle Scholar
  43. Mishra, S. K., Ajello, L., Ahearn, D. G., Burge, H. A., Kurup, B. P., Pierson, D. L., et al. (1992). Environmental mycology and its importance to public health. Journal of Medical and Veterinary Mycology, 30, 287–305.CrossRefGoogle Scholar
  44. Mukerjee, S., Smith, L. A., Johnson, M. M., Neas, L. M., & Stallings, C. A. (2009). Spatial analysis and lan use regression of VOCs and NO2 from school-based urban air monitoring in Detroit/Dearbon, USA. Science of the Total Environment, 407, 4646–4651.CrossRefGoogle Scholar
  45. Ongwandee, M., Moonrinta, R., Panyametheekul, S., Tangbanluekal, C., & Morrison, G. (2009). Concentrations and strengths of formaldehyde and acetaldehyde in office buildings in Bangkok, Thailand. Indoor and Built Environment, 18, 569–575.CrossRefGoogle Scholar
  46. Ott, W. R., Steinemann, A. C., & Wallace, L. A. (2007) Exposure analysis. New York: CRC Taylor and Francis Group. ISBN 1 56670 663 7.Google Scholar
  47. Pegas, P. N., Evtyugina, M. G., Alves, C. A., Nunes, T., Cerqueira, M., Franchi, M., et al. (2009), Outdoor/indoor air quality in primary schools in Lisbon: a preliminary study, Proceedings of the 11th International Conference on Environmental Science and Technology, Chania, Crete, Greece.Google Scholar
  48. Pegas, P. N., Evtyugina, M. G., Alves, C. A., Nunes, T., Cerqueira, M., Franchi, M., et al. (2010). Outdoor/Indoor air quality in primary schools in Lisbon: A preliminary study. Química Nova, 33, 1145–1149.CrossRefGoogle Scholar
  49. Pilidis, G. A., Karakitsios, S. P., Kassomenos, P. A., Kazos, E. A., & Stalikas, C. D. (2009). Measurements of benzene and formaldehyde in a medium sized urban environment. Indoor/outdoor health risk implications on special population groups. Environmental Monitoring and Assessment, 150, 285–294.CrossRefGoogle Scholar
  50. Pilotto, L. S., Douglas, R. M., Attewell, R. G., & Wilson, S. R. (1997). Respiratory effects associated with indoor nitrogen dioxide exposure in children. International Journal of Epidemiology, 26, 788–796.CrossRefGoogle Scholar
  51. Plácido, J. L. (2004). A asma a nível nacional e mundial: perspectivas actuais e tendências de evolução. Revista Portuguesa de Clínica Geral, 20, 583–587.Google Scholar
  52. RSECE (2006). Decreto-Lei n.º 79/2006—Regulamento dos Sistemas Energéticos de Climatização em Edifícios (RSECE), de 04/04/2006, Ministério das Obras Públicas, Transportes e Comunicações.Google Scholar
  53. Scheff, P., Paulius, V., Curtis, L., & Conroy, L. (2000), Indoor air quality in middle school., Part II: development of emission factors for particulate matter and bioaerosols, Applied Occupational and Environmental Hygiene 43, 298.Google Scholar
  54. Shendell, D. G., Winer, A. M., Weker, R., & Colome, S. D. (2004). Evidence of inadequate ventilation in portable classrooms: results of pilot study in Los Angeles County. Indoor Air, 14, 154–158.CrossRefGoogle Scholar
  55. Singer, B. C., Destaillats, H., Hodgson, A. T., & Nazaroff, W. W. (2006). Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids. Indoor Air, 16, 179–191.CrossRefGoogle Scholar
  56. Sohn, J., Yang Kim, J., Son, B., & Park, J. (2009). Indoor air quality investigation according to age of the school buildings in Korea. Journal of Environmental Management, 90, 348–354.CrossRefGoogle Scholar
  57. Spangler, J. D., & Sexton, K. (1983). Indoor air pollution: A public health perspective. Science, 221, 9–17.CrossRefGoogle Scholar
  58. Srivastava, A., Joseph, A. E., & Wachasunder, S. D. (2004). Qualitative detection of volatile organic compounds in outdoor and indoor air. Environmental Monitoring and Assessment, 96, 263–271.CrossRefGoogle Scholar
  59. Stranger, M., Potgieter-Vermaak, S. S., & Van Grieken, R. (2007). Comparative overview of indoor air quality in Antwerp, Belgium. Environment International, 33, 789–797.CrossRefGoogle Scholar
  60. Stranger, M., Potgieter-Vermaak, S. S., & Van Grieken, R. (2008). Characterization of indoor air quality in primary schools in Antwerp, Belgium. Indoor Air, 18, 454–463.CrossRefGoogle Scholar
  61. WHO. (2000). Air quality guidelines for Europe. 2nd ed. Copenhagen, World Health Organization Regional Office for Europe, 2000 (WHO Regional Publications, European Series no. 91).Google Scholar
  62. WHO. (2005). Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide Global update 2005 Summary of risk assessment. World Health Organization 2006.Google Scholar
  63. Witterseh, T., Wyon, D. P., & Clausen, G. (2004). The effects of moderate heat stress and open-plan office noise distraction on SBS symptoms and on the performance of office work. Indoor Air, 14(8), 30–40.CrossRefGoogle Scholar
  64. Yrieix, C., Dulaurent, A., Laffargue, C., Maupetit, F., Pacary, T., & Uhde, E. (2010). Characterization of VOC and formaldehyde emissions from a wood based panel: Results from an inter-laboratory comparison. Chemosphere (in press).Google Scholar
  65. Zayasu, K., Sekizawa, K., Okinaga, S., Yamaya, M., Ohrui, T., & Sasaki, H. (1997). Increased carbon monoxide in exhaled air of asthmatic patiens. American Journal Respiratory and Critical Care Medicine, 156, 1140–1143.Google Scholar
  66. Zhang, G., Spickett, J., Rumchev, K., Lee, A., & Stick, S. (2006). Indoor environmental quality in a “low allergen” school and three standard primary schools in Western Australia. Indoor Air, 16, 74–80.CrossRefGoogle Scholar
  67. Zhao, Z., Zhang, Z., Wang, Z., Ferm, M., Liang, Y., & Norbäck, D. (2008). Asthmatic symptoms among pupils in relation to winter indoor and outdoor air pollution in schools in Taiyuan, China. Environmental Health Perspectives, 116, 90–97.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • P. N. Pegas
    • 1
  • C. A. Alves
    • 1
  • M. G. Evtyugina
    • 1
  • T. Nunes
    • 1
  • M. Cerqueira
    • 1
  • M. Franchi
    • 1
  • C. A. Pio
    • 1
  • S. M. Almeida
    • 2
  • M. C. Freitas
    • 2
  1. 1.Centre for Environmental and Marine Studies, Department of EnvironmentUniversity of AveiroAveiroPortugal
  2. 2.Nuclear and Technological InstituteSacavémPortugal

Personalised recommendations