Advertisement

Environmental Geochemistry and Health

, Volume 32, Issue 3, pp 165–177 | Cite as

Genotypic variation in element concentrations in brown rice from Yunnan landraces in China

  • Yawen Zeng
  • Hongliang Zhang
  • Luxiang Wang
  • Xiaoying Pu
  • Juan Du
  • Shuming Yang
  • Jiafu Liu
Original Paper

Abstract

The mineral elements present in brown rice play an important physiological role in global human health. We investigated genotypic variation of eight of these elements (P, K, Ca, Mg, Fe, Zn, Cu, and Mn) in 11 different grades of brown rice on the basis of the number and distance coefficients of 282 alleles for 20 simple sequence repeat (SSR) markers. Six-hundred and twenty-eight landraces from the same field in Yunnan Province, one of the largest centers of genetic diversity of rice (Oryza sativa L.) in the world, formed our core collection. The mean concentrations (mg kg−1) of the eight elements in brown rice for these landraces were P (3,480) > K (2,540) > Mg (1,480) > Ca (157) > Zn (32.8) > Fe (32.0) > Cu (13.6) > Mn (13.2). Mean P concentrations in brown rice were 6.56 times total soil P, so the grains are important in tissue storage of P, but total soil K is 7.82 times mean K concentrations in brown rice. The concentrations of the eight elements in some grades of brown rice, on the basis of the number and distance coefficients of alleles for 20 SSR markers for the landraces, were significantly different (P < 0.05), and further understanding of the relationship between mineral elements and gene diversity is needed. There was large variation in element concentrations in brown rice, ranging from 2,160 to 5,500 mg P kg−1, from 1,130 to 3,830 mg K kg−1, from 61.8 to 488 mg Ca kg−1, from 864 to 2,020 mg Mg kg−1, from 0.40 to 147 mg Fe kg−1, from 15.1 to 124 mg Zn kg−1, from 0.10 to 59.1 mg Cu kg−1, and from 6.7 to 26.6 mg Mn kg−1. Therefore, germplasm evaluations for Ca, Fe, and Zn concentrations in rice grains have detected up to sevenfold genotypic differences, suggesting that selection for high levels of Ca, Fe, and Zn in breeding for mass production is a feasible approach. Increasing the concentrations of Ca, Fe, and Zn in rice grains will help alleviate chronic Ca, Zn, and Fe deficiencies in many areas of the world.

Keywords

Brown rice Core collection Element concentrations Genotypical difference SSR markers 

Abbreviations

P

Phosphorus

K

Potassium

Ca

Calcium

Mg

Magnesium

Fe

Iron

Zn

Zinc

Cu

Copper

Mn

Manganese

N

Nitrogen

SSR

Simple sequence repeat

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (no. 30660092), Cooperation Program between Province and Zhejiang University from Yunnan Provincial Scientific and Technology Department (no. 2006YX12) and Yunnan Introduction and Foster Talent (no. 2005PY01-14). We are grateful for many valuable suggestions from Professor Chunlin Long, Professor Xiangkun Wang, and Professor Zichao Li. Mr Shiquan Shen assisted with some of the analyses. We also thank Krisa Fredrickson, a Native American from the California Academy of Sciences, for revising and editing the English.

References

  1. Aschner, J. L., & Aschner, M. (2005). Nutritional aspects of manganese homeostasis. Molecular Aspects of Medicine, 26, 353–362. doi: 10.1016/j.mam.2005.07.003.CrossRefGoogle Scholar
  2. Bakker, C., Rodenburg, J., & van Bodegom, P. M. (2005). Effects of Ca- and Fe-rich seepage on P Availability and plant performance in calcareous dune soils. Plant and Soil, 275, 111–122. doi: 10.1007/s11104-005-0438-1.CrossRefGoogle Scholar
  3. Bassam, B. J., Caetano-Anolles, G., & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196, 80–83. doi: 10.1016/0003-2697(91)90120-I.CrossRefGoogle Scholar
  4. Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification. Plant and Soil, 302, 1–17. doi: 10.1007/s11104-007-9466-3.CrossRefGoogle Scholar
  5. Desai, V., & Kaler, S. G. (2008). Role of copper in human neurological disorders. The American Journal of Clinical Nutrition, 88, 855–858.Google Scholar
  6. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus (San Francisco, Calif.), 12, 13–15.Google Scholar
  7. Hajiboland, R., & Beiramzadeh, N. (2008). Rhizosphere properties of rice genotypes as influenced by anoxia and availability of zinc and iron. Pesquisa Agropecuaria Brasileira, 43, 613–622. doi: 10.1590/S0100-204X2008000500009.CrossRefGoogle Scholar
  8. Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H. Y., et al. (2007). Rice OsHKT2, 1 transporter mediates large Na+ influx component into K+-starved roots for growth. The EMBO Journal, 26, 3003–3014. doi: 10.1038/sj.emboj.7601732.CrossRefGoogle Scholar
  9. Huang, B. A., Zhao, Y. C., Sun, W. X., Yang, R. Q., Gong, Z. T., Zou, Z. (2008). Relationships between distributions of longevous population and trace elements in the agricultural ecosystem of Rugao County, Jiangsu, China. Environmental Geochemistry and Health. doi: 10.1007/s10653-008-9177-6.
  10. Huber, C., & Wächtershäuser, G. (2006). α-Hydroxy and α-amino acids under possible hadean, volcanic origin-of-life conditions. Science, 314, 630–632. doi: 10.1126/science.1130895.CrossRefGoogle Scholar
  11. International Rice Genome Sequencing Project (2005). The map-based sequence of the rice genome. Nature, 436, 793–800. doi: 10.1038/nature03895.CrossRefGoogle Scholar
  12. Jiang, S. L., Shi, C. H., & Wu, J. G. (2007). Determination of trace amount for germanium (Ge) by atomic fluorescence spectrometry in rice (Oryza sativa L.). Journal of Food Quality, 30, 481–495. doi: 10.1111/j.1745-4557.2007.00137.x.CrossRefGoogle Scholar
  13. Jung, M. C., Yun, S. T., Lee, J. S., & Lee, J. U. (2005). Baseline study on essential and trace elements in polished rice from South Korea. Environmental Geochemistry and Health, 27, 455–464. doi: 10.1007/s10653-005-4221-2.CrossRefGoogle Scholar
  14. Katzel, J. A., Hari, P., & Vesole, D. H. (2007). Multiple myeloma: charging toward a bright future. CA: A Cancer Journal for Clinicians, 57, 301–318. doi: 10.3322/CA.57.5.301.CrossRefGoogle Scholar
  15. Killilea, D. W., & Ames, B. N. (2008). Magnesium deficiency accelerates cellular senescence in cultured human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 105, 5768–5773. doi: 10.1073/pnas.0712401105.CrossRefGoogle Scholar
  16. Kim, S. K., Park, P. J., Byun, H. G., Je, J. Y., & Moon, S. H. (2003). Recovery of fish bone from hoki (Johnius belengeri) frame using a proteolytic enzyme isolated from mackerel intestine. Journal of Food Biochemistry, 27, 255–266. doi: 10.1111/j.1745-4514.2003.tb00280.x.CrossRefGoogle Scholar
  17. Lin, N. F., Tang, J., & Bian, J. M. (2004). Geochemical environment and health problems in China. Environmental Geochemistry and Health, 26, 81–88. doi: 10.1023/B:EGAH.0000020987.74065.1d.CrossRefGoogle Scholar
  18. Liu, Q., Wang, D. J., Jiang, X. J., & Cao, Z. H. (2004). Effects of the interactions between selenium and phosphorus on the growth and selenium accumulation in rice (Oryza Sativa). Environmental Geochemistry and Health, 26, 325–330. doi: 10.1023/B:EGAH.0000039597.75201.57.CrossRefGoogle Scholar
  19. Liu, Q. L., Xu, X. H., Ren, X. L., Fu, H. W., Wu, D. X., & Shu, Q. Y. (2007). Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theoretical and Applied Genetics, 114, 803–814. doi: 10.1007/s00122-006-0478-9.CrossRefGoogle Scholar
  20. Lu, K. Y., Li, L. Z., Zheng, X. F., Zhang, Z. H., Mou, T. M., & Hu, Z. L. (2008). Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. Journal of Genetics, 87, 305–310. doi: 10.1007/s12041-008-0049-8.CrossRefGoogle Scholar
  21. Ma, J. F., Tamai, K., Yamaji, N., Mitani, N., Konishi, S., Katsuhara, M. et al. (2006). A silicon transporter in rice. Nature, 440, 688–691. doi: 10.1038/nature04590.CrossRefGoogle Scholar
  22. Ma, J. F., Yamaji, N., Mitani, N., Tamai, K., Konishi, S., Fujiwara, T. et al. (2007). An efflux transporter of silicon in rice. Nature, 448, 209–212. doi: 10.1038/nature05964.CrossRefGoogle Scholar
  23. McDonald, G. K., Genc, Y., & Graham, R. D. (2008). A simple method to evaluate genetic variation in grain zinc concentration by correcting for differences in grain yield. Plant and Soil, 306, 49–55. doi: 10.1007/s11104-008-9555-y.CrossRefGoogle Scholar
  24. Meharg, A. A., Lombi, E., Williams, P. N., Scheckel, K., Feldmann, J., Raab, A. et al. (2008). Speciation and localization of arsenic in white and brown rice grains. Environmental Science and Technology, 42, 1051–1057. doi: 10.1021/es702212p.CrossRefGoogle Scholar
  25. Murata, K., Kamei, T., Toriumi, Y., Kobayashi, Y., Iwata, K., Fukumoto, I. et al. (2007). Effect of processed rice with brown rice extracts on serum cholesterol level. Clinical and Experimental Pharmacology and Physiology, 34, 87–89. doi: 10.1111/j.1440-1681.2007.04790.x.CrossRefGoogle Scholar
  26. Panaud, O., Chen, X., & McCouch, S. R. (1996). Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Molecular and General Genetics, 252(59), 7–607.Google Scholar
  27. Pasek, M. A. (2008). Rethinking early earth phosphorus geochemistry. Proceedings of the National Academy of Sciences of the United States of America, 105, 853–858. doi: 10.1073/pnas.0708205105.CrossRefGoogle Scholar
  28. Prasad, A. S. (2008). Zinc in human health: Effect of zinc on immune cells. Molecular Medicine (Cambridge, Mass.), 14, 353–357. doi: 10.2119/2008-00033.Prasad.Google Scholar
  29. Ruan, J., Ma, L. F., & Shi, Y. Z. (2006). Aluminium in tea plantations: Mobility in soils and plants, and the influence of nitrogen fertilization. Environmental Geochemistry and Health, 28, 519–528. doi: 10.1007/s10653-006-9047-z.CrossRefGoogle Scholar
  30. Sakamoto, S., Hayashi, T., Hayashi, K., Murai, F., Hori, M., Kimoto, K. et al. (2007). Pre-germinated brown rice could enhance maternal mental health and immunity during lactation. European Journal of Clinical Nutrition, 46, 391–396. doi: 10.1007/s00394-007-0678-3.CrossRefGoogle Scholar
  31. Sica, D. A., Struthers, A. D., Cushman, W. C., Wood, M., Banas, J. S., & Epstein, M. (2002). Importance of potassium in cardiovascular disease. Journal of Clinical Hypertension, 4, 198–206. doi: 10.1111/j.1524-6175.2002.01728.x.CrossRefGoogle Scholar
  32. Sun, G. X., Williams, P. N., Carey, A. M., Zhu, Y. G., Deacon, C., Raab, A. et al. (2008). Inorganic arsenic in rice bran and its products are an order of magnitude higher than in bulk grain. Environmental Science and Technology, 42, 7542–7546. doi: 10.1021/es801238p.CrossRefGoogle Scholar
  33. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., & Dubcovski, J. (2006). A NAC gene regulating senescence improves grain protein, zinc and iron content in wheat. Science, 314, 1298–1301. doi: 10.1126/science.1133649.CrossRefGoogle Scholar
  34. Umesawa, M., Iso, H., Date, C., Yamamoto, A., Toyoshima, H., Watanabe, Y. et al. (2008). Relations between dietary sodium and potassium intakes and mortality from cardiovascular disease. The American Journal of Clinical Nutrition, 88, 195–202.Google Scholar
  35. Wang, X. M., Yi, K. K., Tao, Y., Wang, F., Wu, Z. C., Jiang, D. A. et al. (2006). Cytokinin represses phosphate-starvation response through increasing of intracellular phosphate level. Plant, Cell & Environment, 29, 1924–1935. doi: 10.1111/j.1365-3040.2006.01568.x.CrossRefGoogle Scholar
  36. White, P. J. & Broadley M. R. (2005). Biofortifying crops with essential mineral elements. Trends in Plant Science, 10, 586–593. doi: 10.1016/j.tplants.2005.10.001.CrossRefGoogle Scholar
  37. Wissuwa, M., Ismail, A. M., & Graham, R. D. (2008). Rice grain zinc concentrations as affected by genotype, native soil-zinc availability, and zinc fertilization. Plant and Soil, 306, 34–48. doi: 10.1007/s11104-007-9368-4.CrossRefGoogle Scholar
  38. Yang, X. E., Chen, W. R., & Feng, Y. (2007). Improving human micronutrient nutrition through biofortification in the soil–plant system: China as a case study. Environmental Geochemistry and Health, 29, 413–428. doi: 10.1007/s10653-007-9086-0.CrossRefGoogle Scholar
  39. Yang, X., Ye, Z. Q., Shi, C. H., Zhu, M. L., & Graham, R. D. (1998). Genotypic differences in concentrations of iron, manganese, copper and zinc in polish rice grain. Journal of Plant Nutrition, 21, 1453–1462. doi: 10.1080/01904169809365495.CrossRefGoogle Scholar
  40. Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozens, G. (2004). Heavy metals in soils and crops in Southeast Asia: 1 Peninsular Malaysia. Environmental Geochemistry and Health, 26, 343–357. doi: 10.1007/s10653-005-4669-0.CrossRefGoogle Scholar
  41. Zeng, Y. W., Shen, S. Q., Li, Z. C., Yang, Z. Y., Wang, X. K., Zhang, H. L. et al. (2003). Ecogeographic and genetic diversity based on morphological characters of indigenous rice (Oryza sativa L.) in Yunnan, China. Genetic Resources and Crop Evolution, 50(56), 6–577.Google Scholar
  42. Zeng, Y. W., Shen, S. Q., Wang, L. X., Liu, J. F., Pu, X. Y., Du, J. et al. (2005). Correlation of plant morphological and grain quality traits with mineral element contents in Yunnan rice. La Ricerca Scientifica, 12, 101–106.Google Scholar
  43. Zeng, Y. W., Wang, L. X., Du, J., Liu, J. F., Yang, S. M., Pu, X. Y. et al. (2009c). Elemental content in brown rice by inductively coupled plasma atomic emission spectroscopy reveals the evolution of Asian cultivated rice. Journal of Integrative Plant Biology, 51, 466–475. doi: 10.1111/j.1744-7909.2009.00820.x.Google Scholar
  44. Zeng, Y. W., Wang, L. X., Du, J., Yang, S. M., Wang, Y. C., Li, Q. W., Sun, Z. H., Pu, X. Y., Du, W. (2009a). Correlation of mineral elements between milled and brown rice and soils in Yunnan studied by ICP–AES. Spectroscopy and Spectral Analysis, 29, 1413–1417.Google Scholar
  45. Zeng, Y. W., Wang, L. X., Pu, X. Y., Du, J., Yang, S. M., Liu, J. F. et al. (2009b). The zonal characterization of elemental concentrations in brown rice of core collection for rice landrace in Yunnan Province by ICP–AES. Spectroscopy and Spectral Analysis, 29(6), 1691–1695.Google Scholar
  46. Zeng, Y. W., Wang, L. X., Sun, Z. H., Yang, S. M., Du, J., Li, Q. W. et al. (2008). Determination of mineral elements of brown rice in near-isogenic lines population for japonica rice by ICP–AES. Spectroscopy and Spectral Analysis, 28, 2966–2969.Google Scholar
  47. Zeng, Y. W., Zhang, H. L., Li, Z. C., Shen, S. Q., Sun, J. L., Wang, M. X. et al. (2007). Evaluation of genetic diversity in the rice landraces (Oryza sativa L.) in Yunnan, China. Breeding Science, 57, 91–99. doi: 10.1270/jsbbs.57.91.CrossRefGoogle Scholar
  48. Zhang, H. L., Sun, J. L., Wang, M. X., Liao, D. Q., Zeng, Y. W., Shen, S. Q. et al. (2006). Genetic structure and phylogeography of rice landraces in Yunnan, China revealed by SSR. Genome, 51, 72–83.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yawen Zeng
    • 1
    • 2
    • 3
  • Hongliang Zhang
    • 5
  • Luxiang Wang
    • 4
  • Xiaoying Pu
    • 1
    • 2
  • Juan Du
    • 1
    • 2
  • Shuming Yang
    • 1
    • 2
  • Jiafu Liu
    • 4
  1. 1.Biotechnology and Genetic Germplasm InstituteYunnan Academy of Agricultural SciencesKunmingChina
  2. 2.Key Laboratory of Agricultural Biotechnology of Yunnan ProvinceKunmingChina
  3. 3.Yunnan Agricultural UniversityKunmingChina
  4. 4.Institute of Quality Standards and Testing TechnologyYunnan Academy of Agricultural SciencesKunmingChina
  5. 5.Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture and Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina

Personalised recommendations