Advertisement

Environmental Geochemistry and Health

, Volume 32, Issue 1, pp 73–82 | Cite as

Tracing the sources of gaseous components (222Rn, CO2 and its carbon isotopes) in soil air under a cool-deciduous stand in Sapporo, Japan

  • Ryoko Fujiyoshi
  • Yukihide Haraki
  • Takashi Sumiyoshi
  • Hikaru Amano
  • Ivan Kobal
  • Janja Vaupotič
Original Paper

Abstract

Radon (222Rn) and carbon dioxide were monitored simultaneously in soil air under a cool-temperate deciduous stand on the campus of Hokkaido University, Sapporo, Japan. Both 222Rn and CO2 concentrations in soil air varied with atmospheric (soil) temperature in three seasons, except for winter when the temperature in soil air remained constant at 2–3°C at depth of 80 cm. In winter, the gaseous components were influenced by low-pressure region passing through the observation site when the ground surface was covered with snow of ~1 m thickness. Carbon isotopic analyses of CO2 suggested that CO2 in soil air may result from mixing of atmospheric air and soil components of different origins, i.e. CO2 from contemporary soil organic matter and old carbon from deeper source, to varying degrees, depending on seasonal meteorological and thus biological conditions.

Keywords

222Rn CO2 Carbon isotopes Soil air 

Notes

Acknowledgments

The authors appreciate the technical staff of AMS Management Section of the Japan Atomic Energy Agency, Japan for helping with pretreatment of air samples and for conducting carbon isotopic analyses by AMS.

References

  1. Breitner, D., Turtiainen, T., Arvela, H., Vesterbacka, P., Johanson, B., Lehtonen, M., et al. (2008). Multidisciplinary analysis of Finnish esker sediment in radon source identification. The Science of the Total Environment, 405, 129–139. doi: 10.1016/j.scitotenv.2008.06.015.CrossRefGoogle Scholar
  2. Darby, S., Hill, D., Auvinen, A., Barros-Dios, J. M., Baysson, H., Bochicchio, F., et al. (2005). Radon in homes and risk of lung cancer: Collaborative analysis of individual data from 13 European case–control studies. British medical journal (Clinical Research Ed.), 330, 223–228. doi: 10.1136/bmj.38308.477650.63.CrossRefGoogle Scholar
  3. Fujiyoshi, R., Kinoshita, M., & Sawamura, S. (2005). Variation of 222Rn activity concentration in soil gas at a site in Sapporo, Japan. Environmental Geochemistry and Health, 27, 539–547. doi: 10.1007/s10653-005-7569-4.CrossRefGoogle Scholar
  4. Fujiyoshi, R., Morimoto, H., & Sawamura, S. (2002). Investigation of the soil radon variation during the winter months in Sapporo, Japan. Chemosphere, 47, 369–373. doi: 10.1016/S0045-6535(01)00310-1.CrossRefGoogle Scholar
  5. Fujiyoshi, R., Sakamoto, K., Imanishi, T., Sumiyoshi, T., Sawamura, S., Vaupotic, J., et al. (2006). Meteorological parameters contributing to variability in 222Rn activity concentration I soil gas at a site in Sapporo, Japan. The Science of the Total Environment, 370, 224–234. doi: 10.1016/j.scitotenv.2006.07.007.CrossRefGoogle Scholar
  6. Harley, N., Ghittaorn, P., Heikkined, M. S. A., Mayers, O. A., & Robbins, E. S. (2008). Radon carcinogenesis: Risk data and cellular hits. Radiation Protection Dosimetry, 130(1), 107–109. doi: 10.1093/rpd/ncn123.CrossRefGoogle Scholar
  7. Mariko, S., Bekku, Y., & Koizumi, H. (1994). Efflux of carbon dioxide from snow-covered forest floor. Ecological Research, 9, 343–350. doi: 10.1007/BF02348421.CrossRefGoogle Scholar
  8. Mayorga, E., Aufdenkampe, A. K., Masiello, C. A., Krusche, A. V., Hedges, J. I., Auay, P. D., et al. (2005). Young organic matter as a source of carbon dioxide outgassing from Amazon Rivers. Nature, 436(28), 538–541. doi: 10.1038/nature03880.CrossRefGoogle Scholar
  9. Monson, R. K., Lipson, D., Burns, S. P., Turnipseed, A. A., Delany, A. C., Williams, M. W., et al. (2006). Winter forest soil respiration controlled by climate and microbial community composition. Nature, 439(9), 711–714. doi: 10.1038/nature04555.CrossRefGoogle Scholar
  10. Oikawa, S., Kanno, N., Sanada, T., Ohashi, N., Uesugi, M., Sato, K., et al. (2003). A nationwide survey of outdoor radon concentration in Japan. Journal of Environmental Radioactivity, 65, 203–213. doi: 10.1016/S0265-931X(02)00097-8.CrossRefGoogle Scholar
  11. Otosaka, S., Amano, H., Kabuto, S., Kinoshita, N., & Tanaka, T. (2008). Quality policy on radiocarbon measurement at the JAEA-Mutsu AMS. Proc. First JAEA Tandem AMS Utilization Workshop 2007, 2008, 21–23.Google Scholar
  12. Sanada, T., Fujimoto, K., Miyano, K., Doi, M., Tokonami, S., Uesugi, M., et al. (1999). Measurement of nationwide indoor Rn concentration in Japan. Journal of Environmental Radioactivity, 45, 129–137. doi: 10.1016/S0265-931X(98)00085-X.CrossRefGoogle Scholar
  13. Stuiver, M., & Polach, H. A. (1997). Radiocarbon 1997 discussion reporting of 14C data. Radiocarbon, 19(3), 355–363.Google Scholar
  14. Takagi, K., Nomura, M., Ashiya, D., Takahashi, H., Sasa, K., Fujinuma, Y., et al. (2005). Dynamic carbon dioxide exchange through snowpack by wind-driven mass transfer in a conifer-broadleaf mixed forest in northernmost Japan. Global Biogeochemical Cycles, 19, GB2012. doi: 10.1029/2004GB002272.CrossRefGoogle Scholar
  15. Tuccimei, P., & Soligo, M. (2008). Correcting for CO2 interference in soil radon flux measurements. Radiation Measurements, 43, 102–105. doi: 10.1016/j.radmeas.2007.05.056.CrossRefGoogle Scholar
  16. Vaupotič, J. (2003). Indoor radon in Slovenia. Nuclear Technology and Radiation Protection, 18, 36–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ryoko Fujiyoshi
    • 1
  • Yukihide Haraki
    • 1
  • Takashi Sumiyoshi
    • 1
  • Hikaru Amano
    • 2
  • Ivan Kobal
    • 3
  • Janja Vaupotič
    • 3
  1. 1.Graduate School of EngineeringHokkaido UniversitySapporoJapan
  2. 2.Aomori Research and Development CenterJapan Atomic Energy InstituteMutsuJapan
  3. 3.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations