Skip to main content

Advertisement

Log in

Soil factors associated with zinc deficiency in crops and humans

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Zinc deficiency is the most ubiquitous micronutrient deficiency problem in world crops. Zinc is essential for both plants and animals because it is a structural constituent and regulatory co-factor in enzymes and proteins involved in many biochemical pathways. Millions of hectares of cropland are affected by Zn deficiency and approximately one-third of the human population suffers from an inadequate intake of Zn. The main soil factors affecting the availability of Zn to plants are low total Zn contents, high pH, high calcite and organic matter contents and high concentrations of Na, Ca, Mg, bicarbonate and phosphate in the soil solution or in labile forms. Maize is the most susceptible cereal crop, but wheat grown on calcareous soils and lowland rice on flooded soils are also highly prone to Zn deficiency. Zinc fertilizers are used in the prevention of Zn deficiency and in the biofortification of cereal grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ahsan, E., & Beuter, T. (2000). Technical note: Changes in crop production scenario. Bangladesh: Resal.

  • Alloway, B. J. (2008a). Micronutrients and crop production. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 1–40). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Alloway, B. J. (2008b). Zinc in soils and crop nutrition (2nd ed.). Brussels: International Zinc Association; Paris: International Fertilizer Industry Association.

  • Baize, D. (2000). France. European Soil Working Group, heavy metal (trace element) and organic matter contents of European soils: Results of preliminary evaluations for 4 member states. Ispra, Italy: European Commission, JRC.

  • Barak, P., & Helmke, P. A. (1993). The chemistry of zinc. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 90–106). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Brennan, R. F., Armour, J. D., & Reuter, D. J. (1993). Diagnosis of zinc deficiency. In A. D. Robson (Ed.), Zinc in soils and plants. Dordrecht: Kluwer Academic Publishers.

  • Brown, P. H., Cakmak, I., & Zhang, Q. (1993). Form and function of zinc in plants. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 90–106). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Cakmak, I. (2000). Role of zinc in protecting plant cells from reactive oxygen species. New Phytol, 146, 185–205.

    Article  CAS  Google Scholar 

  • Cakmak, I. (2008). Zinc deficiency in wheat in Turkey. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 181–200). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Cakmak, I., Kalayci, M., Ekiz, H., Braun, H. J., & Yilmaz, A. (1999). Zinc deficiency as an actual problem in plant and human nutrition in Turkey: A NATO-science for stability project. Field Crops Res, 60, 175–188.

    Article  Google Scholar 

  • Deckers, J. A., Nachtergaele, F. O., & Spaargaren, O. C. (Eds.). (1998). World reference base for soil resources: Introduction (pp. 81–84). Leuven: Acco Publishers.

    Google Scholar 

  • Dobermann, A., & Fairhurst, T. (2000). Rice: Nutrient disorders and nutrient management. Los Baños, Philippines: Potash and Phosphate Institute, Potash and Phosphate Institute of Canada, & International Rice Research Institute.

  • Eyupoglu, F., Kurucu, N., & Sanisa, U. (1994). Status of plant available micronutrients in Turkish soils (in Turkish). Annual report, report no. R-118. Soil and Fertilizer Research Institute, Ankara, pp. 25–32.

  • Fageria, N. K., & Stone, L. F. (2008). Micronutrient deficiency problems in South America. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 245–266). Dordrecht: Springer.

    Chapter  Google Scholar 

  • FAO. (2000a). Calcareous soils. FAO AGL Land and Plant Nutrition Management Services. www.fao.org/ag/agl/agll/prosoil/calc.htm. Accessed 24 February 2009.

  • FAO. (2000b). Sandy soils. FAO AGL Land and Plant Nutrition Management Services. www.fao.org/ag/agl/agll/prosoil/sandy.htm. Accessed 24 February 2009.

  • Gao, X. P., Kuyper, T. M., Zou, C. Q., Zhang, F. S., & Hoffland, E. (2007). Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant and Soil, 290, 283–291.

    Article  CAS  Google Scholar 

  • Gorny, A., Utermann, J., & Eckelmann, W. (2000). Germany, European Soil Working Group, heavy metal (trace element) and organic matter contents of European soils: Results of preliminary evaluations for 4 member states. Ispra, Italy: European Commission, JRC.

  • Graham, R. D. (1983). Effect of nutrient stress on susceptibility of plants to disease with particular reference to trace elements. Advances in Botanic Research, 10, 221–276.

    Article  CAS  Google Scholar 

  • Graham, R. D. (2008). Micronutrient deficiencies in crops and their global significance. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 41–61, 105). Dordrecht: Springer.

  • Graham, R. D., Ascher, J. S., & Hynes, J. S. (1992). Selecting zinc-efficient cereal genotypes for soils low in zinc status. Plant and Soil, 146, 241–250.

    Article  CAS  Google Scholar 

  • Graham, R. D., & Rengel, Z. (1993). Genotypic variation in zinc uptake and utilization by plants. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 107–118). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Hajiboland, R., Yang, X. E., Römheld, V., & Neuman, G. (2005). Effect of bicarbonate on elongation and distribution of organic acids in root and root zone of Zn-efficient and Zn-inefficient rice (Oryza sativa L.) genotypes. Environmental and Experimental Botany, 54(2), 163–173.

    Article  CAS  Google Scholar 

  • Hamid, A., & Ahmad, N. (2001). Paper at regional workshop on Integrated Plant Nutrition System (IPNS). Development and Rural Poverty Alleviation. September 18–21, Bangkok.

  • Herschfinkel, M., Silverman, W. F., & Sekler, I. (2007). The zinc sensing receptor, a link between zinc and cell signaling. Molecular Medicine, 13(7–8), 331–336. doi:10.2119/2006-00038.Hershfinkel.

    Google Scholar 

  • Holloway, R. E., Graham, R. D., & Stacey, S. P. (2008). Micronutrient deficiencies in Australian field crops. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 63–92). Dordrecht: Springer.

    Google Scholar 

  • Hotz, C., & Brown, K. H. (eds.). (2004). Assessment of the risk of zinc deficiency in populations and options for its control. Food and Nutrition Bulletin, 25 (Supplement 2), S91–S204.

    Google Scholar 

  • Huang, C., Barker, S. J., Langridge, P., Smith, F. W., & Graham, R. D. (2000). Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-deficient and sufficient barley roots. Plant Physiology, 124, 415–422.

    Article  CAS  Google Scholar 

  • Jiang, W., Struik, P. C., Linga, J., van Keulen, H., Ming, Z., & Stomph, T. J. (2007). Uptake and distribution of root-applied or foliar-applied 65Zn after flowering in aerobic rice. Annals of Applied Biology, 150, 383–391.

    Article  CAS  Google Scholar 

  • Johnson-Beebout, S. E., Lauren, J. G., & Duxbury, J. M. (2009). Immobilization of zinc fertilizer in flooded soils monitored by adapted DTPA soil test. Communications in Soil Science and Plant Analysis, 40(11 & 12) (in press).

  • Kabata-Pendias, A. (2001). Trace elements in soils and plants (3rd ed.). Boca Raton: CRC Press.

  • Kalayci, M., Torun, B., Eker, S., Aydin, M., Ozturk, L., & Cakmak, I. (1999). Grain yield, zinc deficiency and zinc concentration of wheat cultivars grown in a zinc-deficient calcareous soil in field and greenhouse. Field Crops Research, 63, 87–98.

    Article  Google Scholar 

  • Katyal, J. C., & Vlek, P. L. G. (1985). Micronutrient problems in Tropical Asia. Fertiliser Research, 7, 69–94.

    Article  CAS  Google Scholar 

  • Kiekens, L. (1995). Zinc. In B. J. Alloway (Ed.), Heavy metals in soils (2nd ed., pp. 284–305). London: Blackie Academic and Professional.

    Google Scholar 

  • Lantican, M. A., Pringali, P. L., & Rajaram, S. (2001). Are marginal wheat environments catching up? CYMMIT World Wheat Overview and Outlook, Part 2, 39–44.

    Google Scholar 

  • Lindsay, W. L. (1972). Zinc in soils and plant nutrition. Advances in Agronomy, 24, 147–186.

    Article  CAS  Google Scholar 

  • Loneragan, J. F., & Webb, M. J. (1993). Interactions between zinc and other nutrients affecting the growth of plants. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 119–134). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Longhurst, R. D., Roberts, A. H. C., & Waller, J. E. (2004). Concentrations of arsenic, cadmium, copper, lead and zinc in New Zealand pastoral topsoils and herbage. New Zealand Journal of Agricultural Research, 47, 23–32.

    CAS  Google Scholar 

  • Malakouti, M. J. (2007). Zinc is a neglected element in the life cycle of plants. Middle Eastern & Russian Journal of Plant Science and Biotechnology, 1(1), 1–12.

    Google Scholar 

  • Marschner, H. (1993). Zinc uptake from soils. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 48–78). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants (2nd ed.). London: Academic Press.

  • Martens, D. C., & Westermann, D. T. (1991). Fertilizer applications for correcting micronutrient deficiencies. In J. J. Mortvedt, F. R. Cox, L. M. Shuman, & R. M. Welch (Eds.), Micronutrients in agriculture (2nd ed., pp. 549–592). Madison: Soil Science Society of America.

    Google Scholar 

  • Mortvedt, J. J., & Gilkes, R. J. (1993). Zinc fertilisers. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 33–44). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Pal, A. R., Motiramani, D. P., Rathorf, G. S., Bansal, K. N., & Gupta, S. B. (1989). A model to predict the zinc status of soils for maize. Plant and Soil, 116, 49–55.

    Article  CAS  Google Scholar 

  • Rashid, A. (2006). Incidence, diagnosis and management of micronutrient deficiencies in crops: Success stories and limitations in Pakistan. IFA International Workshop on Micronutrients, 27 February, Kunming, China.

  • Reimann, C., Siewers, U., Tarvainen, T., Bityukova, L., Eriksson, J., Gilucis, A., et al. (2003). Agricultural soils in Northern Europe: A geochemical atlas. Stuttgart: Schweizerbart’sche Verlagsbuchhandlung.

    Google Scholar 

  • Scharpenseel, H. W., Eichwald, E., Haupenthal, Ch., & Neue, H. U. (1983). Zinc deficiency in a soil toposequence grown to rice at Tiaong, Quezon Province, Philippines. Catena, 10, 115–132.

    Article  CAS  Google Scholar 

  • Sillanpää, M. (1982). Micronutrients and the nutrient status of soils: A global study. FAO Soils Bulletin No. 48, FAO, Rome.

  • Sillanpää, M. (1990). Micronutrient assessment at country level: An international study. FAO Soils Bulletin No. 63, FAO, Rome.

  • Singh, M. V. (2008). Micronutrient deficiencies in crops and soils in India. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 93–126). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Singh, B., Natesan, S. K. A., Singh, B. K., & Usha, K. (2005). Improving zinc efficiency of cereals under zinc deficiency. Current Science, 88(1), 36–44.

    CAS  Google Scholar 

  • Srivastava, P. C., & Gupta, U. C. (1996). Trace elements in crop production (p. 356). Lebanon, NH: Science Publishers.

    Google Scholar 

  • Tapeiro, H., & Tew, K. D. (2003). Trace elements in human physiology and pathology: Zinc and metallothioneins. Biomedical Pharmacotherapy, 57, 399–411.

    Article  Google Scholar 

  • Timsina, J., & Connor, D. J. (2001). Productivity and management of rice–wheat cropping systems: Issues and challenges. Field Crops Research, 69, 93–132.

    Article  Google Scholar 

  • University of California. (2006). Cooperative extension project. http://agronomy.ucdavis.edu/uccerice?PRODUCT/rpic04.htm. Accessed 24 February 2009.

  • Uygur, V., & Rimmer, D. L. (2000). Reactions of zinc with iron coated calcite surfaces at alkaline pH. European Journal of Soil Science, 51, 511–516.

    Article  CAS  Google Scholar 

  • Welch, R. M. (1993). Zinc concentrations and forms in plants for humans and animals. In A. D. Robson (Ed.), Zinc in soils and plants (pp. 183–196). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Wissuwa, M., Ismail, A. M., & Graham, R. D. (2007). Rice grain zinc concentrations as affected by genotype, native soil-zinc, and zinc fertilization. Plant and Soil. doi: 10.1007/s11104-007-9368-458.

  • Yang, X., Römheld, V., & Marschner, H. (1994). Effect of bicarbonate on root growth and accumulation of organic acids in Zn-inefficient and Zn-efficient rice cultivars. Plant and Soil, 164, 1–7.

    Article  CAS  Google Scholar 

  • Zou, C., Gao, X., Shi, R., Fan, X., & Zhang, F. (2008). Micronutrient deficiencies in crop production in China. In B. J. Alloway (Ed.), Micronutrient deficiencies in global crop production (pp. 127–148). Dordrecht: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. J. Alloway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ Geochem Health 31, 537–548 (2009). https://doi.org/10.1007/s10653-009-9255-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-009-9255-4

Keywords

Navigation