Skip to main content
Log in

Accumulation of iron and arsenic in the Chandina alluvium of the lower delta plain, Southeastern Bangladesh

  • Original Article
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Accumulations of iron, manganese, and arsenic occur in the Chandina alluvium of southeastern Bangladesh within 2.5 m of the ground surface. These distinctive orange-brown horizons are subhorizontal and consistently occur within 1 m of the contact of the aerated (yellow-brown) and water-saturated (gray) sediment. Ferric oxyhydroxide precipitates that define the horizons form by oxidation of reduced iron in pore waters near the top of the saturated zone when exposed to air in the unsaturated sediment. Hydrous Fe-oxide has a high specific surface area and thus a high adsorption capacity that absorbs the bulk of arsenic also present in the reduced pore water, resulting in accumulations containing as much as 280 ppm arsenic. The steep redox gradient that characterizes the transition of saturated and unsaturated sediment also favors accumulation of manganese oxides in the oxidized sediment. Anomalous concentrations of phosphate and molybdenum also detected in the ferric oxyhydroxide-enriched sediment are attributed to sorption processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acharyya, S. K. (2005). Arsenic levels in groundwater from Quaternary alluvium in the Ganga plain and the Bengal Basin, Indian Subcontinent: In sights into influence of stratigraphy. International Association for Gondwana Research, Japan. Gondwana Research, 8(1), 55–66.

    Article  CAS  Google Scholar 

  • Acharyya, S. K., Chakraborty, P., Lahiri, S., Raymahashay, B. C., Guha, S., & Bhowmik, A. (1999). Arsenic poisoning in the Ganges delta. Nature, 401, 545.

    Article  CAS  Google Scholar 

  • Acharyya, S. K., Lahiri, S., Raymahashay, B. C., & Bhowmik, A. (2000). Arsenic toxicity in groundwater in parts of Bengal Basin in India and Bangladesh: Role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environmental Geology, 39, 1127–1137.

    Article  CAS  Google Scholar 

  • Aggett, J., & O’Brien, G. A. (1985). Detailed model for the mobility of arsenic in lacustrine sediments based on measurements in Lake Ohakuri. Environmental Science and Technology, 19, 231–238.

    Article  CAS  Google Scholar 

  • Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., et al. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19, 181–200.

    Article  CAS  Google Scholar 

  • Ahsan, H. (2007, May). Health effects of arsenic in Bangladesh: Gathering knowledge for prevention. Paper presented at the International Seminar on ‘New findings concerning the health effects and geochemistry of arsenic’ jointly organized by Columbia University and Dhaka University, Dhaka.

  • Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., et al. (2004). Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Applied Geochemistry, 19, 215–230.

    Article  CAS  Google Scholar 

  • Alam, M. K., Hasan, A. K. M. S., Khan, M. R., & Whitney, J. W. (1990). Geological map of Bangladesh. Dhaka: GSB.

    Google Scholar 

  • Allison, M. A. (1998). Historical changes in the Ganges–Brahmaputra delta front. Journal of Coastal Research, 14, 480–490.

    Google Scholar 

  • Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., et al. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: Sources and mobilization processes. Journal of Geochemical Exploration, 77, 109–131.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., Van der Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science and Technology, 36(14), 3096–3103.

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic contaminated groundwater in alluvial aquifers from the delta plains, eastern India: Options for safe drinking water supply. Water Resources Development, 13, 79–92.

    Article  Google Scholar 

  • Bhattacharya, P., Jacks, G., Ahmed, K. M., Khan, A. A., & Routh, J. (2002). Arsenic in groundwater of the Bengal delta plain aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69(4), 538–545.

    Article  CAS  Google Scholar 

  • Brammer, H. (1971). Soil survey project, Bangladesh: Agricultural development possibilities. Technical Report No. 2 Rome; FAO.

  • Brannon, J. M., & Patrick, W. H. (1987). Fixation, transformation and mobilization of arsenic in sediments. Environmental Science and Technology, 21, 450–459.

    Article  CAS  Google Scholar 

  • Breit, G. N., Foster, A. L., Perkins, R. B., Yount, J. C., King, T., Welch, A. H., et al., (2004). As-rich ferric oxyhydroxide enrichments in the shallow subsurface of Bangladesh. In R. B. Wanty & R. R. Seal II (Eds.), Proceedings of the Eleventh International Symposium on Water-Rock Interaction WRI-11, Saratoga Springs New York, pp. 1457–1461.

  • Brinkman, R. (1977). Surface-water gley soils in Bangladesh: Genesis. Geoderma, 17, 111–144.

    Article  CAS  Google Scholar 

  • BWDB. (2005). Report of the deep aquifer characterization and mapping project, phase-I (Kachua). Bangladesh Water Development Board component.

  • Chakraborti, D. (1995). Arsenic contamination in six district of West Bengal, India: The background. In: Proceedings of International Conference—Arsenic in Groundwater: Cause, Effect and Remedy, Kolkata.

  • Chirenje, T., Ma, L. Q., Szulczewski, M., Littell, R., Portier, K. M., & Zillioux, E. (2003). Arsenic distribution in Florida urban soils: Comparison between Gainesville and Miami. Journal of Environment Quality, 32, 109–119.

    CAS  Google Scholar 

  • Cramer, J. J., & Nesbitt, H. W. (1983). Mass-balance relations and trace element mobility during continental weathering of various igneous rocks. Sciences Geologiques Memoire, 73, 63–73.

    Google Scholar 

  • Datta, D. K., & Subramanian, V. (1997). Texture and mineralogy of sediments from the Ganges–Brahmaputra–Meghna river system in Bengal Basin, Bangladesh and their environment implications. Environmental Geology, 30, 181–188.

    Article  Google Scholar 

  • Dixit, S., & Hering, J. G. (2003). Comparison of As(V) and As(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science and Technology, 37, 4182–4189.

    Article  CAS  Google Scholar 

  • Dowling, C. B., Poreda, R. J., & Basu, A. R. (2003). The groundwater geochemistry of the Bengal Basin: Weathering, chemisorption, and trace metal flux to the ocean. Geochimica et Cosmochimica Acta, 67(12), 2117–2136.

    Article  CAS  Google Scholar 

  • DPHE-BGS. (2001). Arsenic contamination of groundwater in Bangladesh. British Geological Survey and Department of Public Health Engineering, Govt. of Bangladesh; rapid investigation phase, Final Report.

  • Dudal, R. (1957, December). Paddy soils. Paper presented at the first South East Asian soils conference, Manila.

  • Graziano, J. (2007, May). Consequences of arsenic and manganese exposure on childhood development. Paper presented at the International Seminar on ‘New findings concerning the health effects and geochemistry of arsenic’ jointly organized by Columbia University and Dhaka University, Dhaka.

  • GWTF. (2002). Report of the Ground Water Task Force, Ministry of Local Govt. Rural Dev. and Co-operatives, Govt. of the Peoples Republic of Bangladesh.

  • Harris, R. C., & Adams, J. A. S. (1966). Geochemical and mineralogical studies on the weathering of granitic rocks. American Journal of Science, 264, 146–173.

    Google Scholar 

  • Harvey, C. H., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1606.

    Article  CAS  Google Scholar 

  • Hingston, F. J., Posner, A. M., & Quirk, J. P. (1971). Competitive adsorption of negatively charged ligands on oxide surfaces. Discussions of the Faraday Society, 52, 334–342.

    Article  Google Scholar 

  • Horneman, A., van Geen, A., Kent, D. V., Mathe, P. E., Zheng, Y., Dhar, R. K., et al. (2004). Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochimica et Cosmochimica Acta, 68, 3459–3473.

    Article  CAS  Google Scholar 

  • Islam, F. S., Gault, A. G., Boothman, D. A., Polya, D. A., Charnock, J. M., Chatterjee, D., et al. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430, 68–71.

    Article  CAS  Google Scholar 

  • Khandker, S. (2007, May). Management of arsenicosis patients: Findings of some research studies conducted in selected sub-districts of Bangladesh. Paper presented at the International Seminar on ‘New findings concerning the health effects and geochemistry of arsenic’ jointly organized by Columbia University and Dhaka University, Dhaka.

  • Kim, M.-J., Nriagu, J., & Haack, S. (2000). Carbonate ions and arsenic dissolution by groundwater. Environmental Science and Technology, 34, 3094–3100.

    Article  CAS  Google Scholar 

  • Koenigs, F. F. R. (1950). A Sawah profile near Bogor (Java). Institute for Soil Research, Bogor, Indonesia. Aric Res St Bulletin No. 105.

  • Korte, N. E., & Fernando, Q. (1991). A review of arsenic (III) in groundwater. Critical Reviews in Environmental Control, 21, 1–39.

    Article  CAS  Google Scholar 

  • Lowers, H. A., Breit, G. N., Foster, A. L., Yount, J. C., Whitney, J. W., Uddin, M. N., et al. (in press). Importance of pyrite as a sink for arsenic in Bengal Basin sediment, Bangladesh. Geochimica et Cosmochimica Acta.

  • Mallik, S., & Rajagopal, N. (1996). Groundwater development in the arsenic effected alluvial belt of West Bengal-some questions. Current Science, 70, 956–958.

    Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: The example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1255–1293.

    Article  CAS  Google Scholar 

  • McArthur, J. M., Ravenscroft, P., Safiullah, S., & Thirlwall, M. F. (2001). Arsenic in groundwater, testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37(1), 109–117.

    Article  CAS  Google Scholar 

  • Meharg, A. A., Scrimgeour, C., Hossain, S. A., Fuller, K., Cruickshank, K., Williams, P. N., et al. (2006). Codeposition of organic carbon and arsenic in Bengal Delta aquifers. Environmental Science and Technology, 40, 4928–4935.

    Article  CAS  Google Scholar 

  • Mitsuchi, M. (1975). Permeability series of lowland paddy soils in Japan. Japan Agricultural Research Quarterly, 9(1), 28–33.

    Google Scholar 

  • Moore, J. N., Ficklin, W. H., & Johns, C. (1988). Partitioning of arsenic and metals in reducing sulfide sediments. Environmental Science and Technology, 22, 432–437.

    Article  CAS  Google Scholar 

  • Moormann, F. R., & Breemen, N. V. (1978). Rice: Soil, water, land (p. 171). Manila, Philippines: International Rice Research Institute.

    Google Scholar 

  • Morgan, J. P., & McIntire, W. G. (1959). Quaternary geology of the Bengal Basin, East Pakistan and India. Geological Society of America Bulletin, 70, 319–342.

    Article  Google Scholar 

  • Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338.

    Article  CAS  Google Scholar 

  • Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.

    Article  CAS  Google Scholar 

  • Norra, S., Berner, Z. A., Agarwala, P., Wagner, F., Chandrasekharam, D., & Stuben, D. (2005). Impact of irrigation with arsenic rich groundwater on soil and crops: A geochemical case study in West Bengal Delta Plain, India. Applied Geochemistry, 20, 1890–1906.

    Article  CAS  Google Scholar 

  • Polizotto, M. L., Harvvey, C. F., Sutton, S. R., & Fendorf, S. (2005). Processes conducive to release and transport of arsenic into aquifers of Bangladesh. Proceedings of the National Academy of Sciences, 102, 18819–18823.

    Article  CAS  Google Scholar 

  • Ravenscroft, P., McArthur, J. M., & Hoque, B. A. (2001). Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In W. R. Chappell, C. O. Abernathy, & R. L. Calderon (Eds.), Arsenic exposure and health effects (pp. 53–77). Oxford: IV Elsevier.

    Google Scholar 

  • Rowland, H. A. L., Polya, D. A., Lloyd, J. R., & Pancost, R. D. (2006). Characterization of organic matter in a shallow reducing, arsenic-rich aquifer, West Bengal. Organic Geochemistry, 37, 1101–1114.

    Article  CAS  Google Scholar 

  • Safiullah, S., Kabir, A., Tareq, S. M., Khan, M. M. K., & Alam, F. R. (1999). Removal of arsenic by composite porous materials based on Fe2O3–MnO2 laterite soil. Journal of the Bangladesh Chemical Society, 12(2), 185–192.

    Google Scholar 

  • Smedley, P. L., & Kinniburg, D. G. (2002). A review of the source behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smith, E., Naidu, R., & Alston, A. M. (2002). Chemistry of inorganic arsenic in soils: II. Effect of phosphorous, sodium and calcium on arsenic sorption. Journal of Environment Quality, 31, 557–563.

    CAS  Google Scholar 

  • Stanley, D. J., & Warne, A. G. (1994). Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science, 265, 228–231.

    Article  CAS  Google Scholar 

  • Stollenwerk, K. G., Breit, G. N., Welch, A. H., Yount, J. C., Whitney, J. W., Foster, A. L., et al. (2007). Arsenic attenuation by oxidized aquifer sediments in Bangladesh. The Science of the Total Environment. doi:10.101016/j.scitotenv.2006.11.029.

  • Stuben, D., Berner, Z., Chandrasekharam, D., & Karmakav, J. (2003). Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of arsenic under reducing conditions. Applied Geochemistry, 18, 1417–1434.

    Article  CAS  Google Scholar 

  • Sullivan, K. A., & Aller, R. C. (1996). Diagenetic cycling of arsenic in Amazon Shelf sediments. Geochimica et Cosmochimica Acta, 60, 1465–1477.

    Article  CAS  Google Scholar 

  • Tareq, S. M., Safiullah, S., Anawar, H. M., Rahman, M. M., & Ishizuka, T. (2003). Arsenic pollution in groundwater: A self-organizing complex geochemical process in the deltaic sedimentary environment, Bangladesh. The Science of the Total Environment, 313, 213–226.

    Article  CAS  Google Scholar 

  • Taggart, J. E. (2002). Analytical methods for chemical analysis of geologic and other materials, U.S. Geological Survey, U.S. Geol. Sur. Open-file Report 02-223.

  • Tucker, M. (2000). Techniques in sedimentology. UK: Blackwell Science.

    Google Scholar 

  • Uddin, A., & Lundberg, N. (1998). Cenozoic history of the Himalayan-Bengal system: Sand composition in the Bengal Basin, Bangladesh. Geological Society of America Bulletin, 110, 497–511.

    Article  Google Scholar 

  • Van Geen, A., Zheng, Y., Cheng, A., He, Y., Dhar, R. K., Garnier, J. M., et al. (2006). Impact of irrigating rice paddies with ground water containing arsenic in Bangladesh. The Science of the Total Environment, 367, 769–777.

    Article  CAS  Google Scholar 

  • Van Geen, A., Zheng, Y., Versteeg, R., Stute, M., Horneman, A., Dhar, R., et al. (2003) Spacial variability of arsenic in 6000 tubewells in a 25 km2 area of Bangladesh. Water Resources Research, 39(5), 1140.

    Google Scholar 

  • Williams, L. E., Barnett, M. O., Kramer, T. A., & Melville, J. G. (2003). Adsorption and transport of arsenic(V) in experimental subsurface systems. Journal of Environment Quality, 32, 841–850.

    Article  CAS  Google Scholar 

  • Yan, X.-P., Kerrich, R., & Hendry, M. J. (2000). Distribution of arsenic (3), arsenic (5) and total inorganic arsenic in pore waters from a thick till and clay rich aquitard sequence, Saskatchewan, Canada. Geochimica et Cosmochimica Acta, 62, 2637–2648.

    Article  Google Scholar 

  • Zahid, A., Balke, K.-D., Hassan, M. Q., & Flegr, M. (2006). Evaluation of aquifer environment under Hazaribagh leather processing zone of Dhaka city. Environmental Geology. doi:10.1007/s00254-006-0225-1.

  • Zhang, G. L., & Gong, Z. T. (2003). Pedogenic evolution of paddy soils in different soil landscapes. Geoderma, 115, 15–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Christoph Berthold, Department of Sedimentology, University of Tuebingen, Germany; Dr. Jorn Breuer, Institute of Agricultural Chemistry, University of Hohenheim, Germany; and Mrs. Renate Riehle, Institute for Geology and Paleontology, University of Tuebingen for their kind support in performing laboratory analyses. The German Academic Exchange Service (DAAD) and Bangladesh Water Development Board are gratefully acknowledged, respectively, for providing a research fellowship to the first author to perform laboratory work in Germany and allowing the research to be carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwar Zahid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahid, A., Hassan, M.Q., Breit, G.N. et al. Accumulation of iron and arsenic in the Chandina alluvium of the lower delta plain, Southeastern Bangladesh. Environ Geochem Health 31 (Suppl 1), 69–84 (2009). https://doi.org/10.1007/s10653-008-9226-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-008-9226-1

Keywords

Navigation