Advertisement

Environmental Geochemistry and Health

, Volume 31, Supplement 1, pp 69–84 | Cite as

Accumulation of iron and arsenic in the Chandina alluvium of the lower delta plain, Southeastern Bangladesh

  • Anwar Zahid
  • M. Q. Hassan
  • G. N. Breit
  • K.-D. Balke
  • Matthias Flegr
Original Article

Abstract

Accumulations of iron, manganese, and arsenic occur in the Chandina alluvium of southeastern Bangladesh within 2.5 m of the ground surface. These distinctive orange-brown horizons are subhorizontal and consistently occur within 1 m of the contact of the aerated (yellow-brown) and water-saturated (gray) sediment. Ferric oxyhydroxide precipitates that define the horizons form by oxidation of reduced iron in pore waters near the top of the saturated zone when exposed to air in the unsaturated sediment. Hydrous Fe-oxide has a high specific surface area and thus a high adsorption capacity that absorbs the bulk of arsenic also present in the reduced pore water, resulting in accumulations containing as much as 280 ppm arsenic. The steep redox gradient that characterizes the transition of saturated and unsaturated sediment also favors accumulation of manganese oxides in the oxidized sediment. Anomalous concentrations of phosphate and molybdenum also detected in the ferric oxyhydroxide-enriched sediment are attributed to sorption processes.

Keywords

Adsorption Arsenic distribution Iron oxides Soil and sediments Trace metals 

Notes

Acknowledgements

The authors are grateful to Dr. Christoph Berthold, Department of Sedimentology, University of Tuebingen, Germany; Dr. Jorn Breuer, Institute of Agricultural Chemistry, University of Hohenheim, Germany; and Mrs. Renate Riehle, Institute for Geology and Paleontology, University of Tuebingen for their kind support in performing laboratory analyses. The German Academic Exchange Service (DAAD) and Bangladesh Water Development Board are gratefully acknowledged, respectively, for providing a research fellowship to the first author to perform laboratory work in Germany and allowing the research to be carried out.

References

  1. Acharyya, S. K. (2005). Arsenic levels in groundwater from Quaternary alluvium in the Ganga plain and the Bengal Basin, Indian Subcontinent: In sights into influence of stratigraphy. International Association for Gondwana Research, Japan. Gondwana Research, 8(1), 55–66.CrossRefGoogle Scholar
  2. Acharyya, S. K., Chakraborty, P., Lahiri, S., Raymahashay, B. C., Guha, S., & Bhowmik, A. (1999). Arsenic poisoning in the Ganges delta. Nature, 401, 545.CrossRefGoogle Scholar
  3. Acharyya, S. K., Lahiri, S., Raymahashay, B. C., & Bhowmik, A. (2000). Arsenic toxicity in groundwater in parts of Bengal Basin in India and Bangladesh: Role of Quaternary stratigraphy and Holocene sea-level fluctuation. Environmental Geology, 39, 1127–1137.CrossRefGoogle Scholar
  4. Aggett, J., & O’Brien, G. A. (1985). Detailed model for the mobility of arsenic in lacustrine sediments based on measurements in Lake Ohakuri. Environmental Science and Technology, 19, 231–238.CrossRefGoogle Scholar
  5. Ahmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., et al. (2004). Arsenic enrichment in groundwater of the alluvial aquifers in Bangladesh: An overview. Applied Geochemistry, 19, 181–200.CrossRefGoogle Scholar
  6. Ahsan, H. (2007, May). Health effects of arsenic in Bangladesh: Gathering knowledge for prevention. Paper presented at the International Seminar on ‘New findings concerning the health effects and geochemistry of arsenic’ jointly organized by Columbia University and Dhaka University, Dhaka.Google Scholar
  7. Akai, J., Izumi, K., Fukuhara, H., Masuda, H., Nakano, S., Yoshimura, T., et al. (2004). Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh. Applied Geochemistry, 19, 215–230.CrossRefGoogle Scholar
  8. Alam, M. K., Hasan, A. K. M. S., Khan, M. R., & Whitney, J. W. (1990). Geological map of Bangladesh. Dhaka: GSB.Google Scholar
  9. Allison, M. A. (1998). Historical changes in the Ganges–Brahmaputra delta front. Journal of Coastal Research, 14, 480–490.Google Scholar
  10. Anawar, H. M., Akai, J., Komaki, K., Terao, H., Yoshioka, T., Ishizuka, T., et al. (2003). Geochemical occurrence of arsenic in groundwater of Bangladesh: Sources and mobilization processes. Journal of Geochemical Exploration, 77, 109–131.CrossRefGoogle Scholar
  11. Appelo, C. A. J., Van der Weiden, M. J. J., Tournassat, C., & Charlet, L. (2002). Surface complexation of ferrous iron and carbonate on ferrihydrite and the mobilization of arsenic. Environmental Science and Technology, 36(14), 3096–3103.CrossRefGoogle Scholar
  12. Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic contaminated groundwater in alluvial aquifers from the delta plains, eastern India: Options for safe drinking water supply. Water Resources Development, 13, 79–92.CrossRefGoogle Scholar
  13. Bhattacharya, P., Jacks, G., Ahmed, K. M., Khan, A. A., & Routh, J. (2002). Arsenic in groundwater of the Bengal delta plain aquifers in Bangladesh. Bulletin of Environmental Contamination and Toxicology, 69(4), 538–545.CrossRefGoogle Scholar
  14. Brammer, H. (1971). Soil survey project, Bangladesh: Agricultural development possibilities. Technical Report No. 2 Rome; FAO.Google Scholar
  15. Brannon, J. M., & Patrick, W. H. (1987). Fixation, transformation and mobilization of arsenic in sediments. Environmental Science and Technology, 21, 450–459.CrossRefGoogle Scholar
  16. Breit, G. N., Foster, A. L., Perkins, R. B., Yount, J. C., King, T., Welch, A. H., et al., (2004). As-rich ferric oxyhydroxide enrichments in the shallow subsurface of Bangladesh. In R. B. Wanty & R. R. Seal II (Eds.), Proceedings of the Eleventh International Symposium on Water-Rock Interaction WRI-11, Saratoga Springs New York, pp. 1457–1461.Google Scholar
  17. Brinkman, R. (1977). Surface-water gley soils in Bangladesh: Genesis. Geoderma, 17, 111–144.CrossRefGoogle Scholar
  18. BWDB. (2005). Report of the deep aquifer characterization and mapping project, phase-I (Kachua). Bangladesh Water Development Board component.Google Scholar
  19. Chakraborti, D. (1995). Arsenic contamination in six district of West Bengal, India: The background. In: Proceedings of International Conference—Arsenic in Groundwater: Cause, Effect and Remedy, Kolkata.Google Scholar
  20. Chirenje, T., Ma, L. Q., Szulczewski, M., Littell, R., Portier, K. M., & Zillioux, E. (2003). Arsenic distribution in Florida urban soils: Comparison between Gainesville and Miami. Journal of Environment Quality, 32, 109–119.Google Scholar
  21. Cramer, J. J., & Nesbitt, H. W. (1983). Mass-balance relations and trace element mobility during continental weathering of various igneous rocks. Sciences Geologiques Memoire, 73, 63–73.Google Scholar
  22. Datta, D. K., & Subramanian, V. (1997). Texture and mineralogy of sediments from the Ganges–Brahmaputra–Meghna river system in Bengal Basin, Bangladesh and their environment implications. Environmental Geology, 30, 181–188.CrossRefGoogle Scholar
  23. Dixit, S., & Hering, J. G. (2003). Comparison of As(V) and As(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science and Technology, 37, 4182–4189.CrossRefGoogle Scholar
  24. Dowling, C. B., Poreda, R. J., & Basu, A. R. (2003). The groundwater geochemistry of the Bengal Basin: Weathering, chemisorption, and trace metal flux to the ocean. Geochimica et Cosmochimica Acta, 67(12), 2117–2136.CrossRefGoogle Scholar
  25. DPHE-BGS. (2001). Arsenic contamination of groundwater in Bangladesh. British Geological Survey and Department of Public Health Engineering, Govt. of Bangladesh; rapid investigation phase, Final Report.Google Scholar
  26. Dudal, R. (1957, December). Paddy soils. Paper presented at the first South East Asian soils conference, Manila.Google Scholar
  27. Graziano, J. (2007, May). Consequences of arsenic and manganese exposure on childhood development. Paper presented at the International Seminar on ‘New findings concerning the health effects and geochemistry of arsenic’ jointly organized by Columbia University and Dhaka University, Dhaka.Google Scholar
  28. GWTF. (2002). Report of the Ground Water Task Force, Ministry of Local Govt. Rural Dev. and Co-operatives, Govt. of the Peoples Republic of Bangladesh.Google Scholar
  29. Harris, R. C., & Adams, J. A. S. (1966). Geochemical and mineralogical studies on the weathering of granitic rocks. American Journal of Science, 264, 146–173.Google Scholar
  30. Harvey, C. H., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., et al. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298, 1602–1606.CrossRefGoogle Scholar
  31. Hingston, F. J., Posner, A. M., & Quirk, J. P. (1971). Competitive adsorption of negatively charged ligands on oxide surfaces. Discussions of the Faraday Society, 52, 334–342.CrossRefGoogle Scholar
  32. Horneman, A., van Geen, A., Kent, D. V., Mathe, P. E., Zheng, Y., Dhar, R. K., et al. (2004). Decoupling of As and Fe release to Bangladesh groundwater under reducing conditions. Part I: Evidence from sediment profiles. Geochimica et Cosmochimica Acta, 68, 3459–3473.CrossRefGoogle Scholar
  33. Islam, F. S., Gault, A. G., Boothman, D. A., Polya, D. A., Charnock, J. M., Chatterjee, D., et al. (2004). Role of metal-reducing bacteria in arsenic release from Bengal delta sediments. Nature, 430, 68–71.CrossRefGoogle Scholar
  34. Khandker, S. (2007, May). Management of arsenicosis patients: Findings of some research studies conducted in selected sub-districts of Bangladesh. Paper presented at the International Seminar on ‘New findings concerning the health effects and geochemistry of arsenic’ jointly organized by Columbia University and Dhaka University, Dhaka.Google Scholar
  35. Kim, M.-J., Nriagu, J., & Haack, S. (2000). Carbonate ions and arsenic dissolution by groundwater. Environmental Science and Technology, 34, 3094–3100.CrossRefGoogle Scholar
  36. Koenigs, F. F. R. (1950). A Sawah profile near Bogor (Java). Institute for Soil Research, Bogor, Indonesia. Aric Res St Bulletin No. 105.Google Scholar
  37. Korte, N. E., & Fernando, Q. (1991). A review of arsenic (III) in groundwater. Critical Reviews in Environmental Control, 21, 1–39.CrossRefGoogle Scholar
  38. Lowers, H. A., Breit, G. N., Foster, A. L., Yount, J. C., Whitney, J. W., Uddin, M. N., et al. (in press). Importance of pyrite as a sink for arsenic in Bengal Basin sediment, Bangladesh. Geochimica et Cosmochimica Acta.Google Scholar
  39. Mallik, S., & Rajagopal, N. (1996). Groundwater development in the arsenic effected alluvial belt of West Bengal-some questions. Current Science, 70, 956–958.Google Scholar
  40. McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: The example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1255–1293.CrossRefGoogle Scholar
  41. McArthur, J. M., Ravenscroft, P., Safiullah, S., & Thirlwall, M. F. (2001). Arsenic in groundwater, testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resources Research, 37(1), 109–117.CrossRefGoogle Scholar
  42. Meharg, A. A., Scrimgeour, C., Hossain, S. A., Fuller, K., Cruickshank, K., Williams, P. N., et al. (2006). Codeposition of organic carbon and arsenic in Bengal Delta aquifers. Environmental Science and Technology, 40, 4928–4935.CrossRefGoogle Scholar
  43. Mitsuchi, M. (1975). Permeability series of lowland paddy soils in Japan. Japan Agricultural Research Quarterly, 9(1), 28–33.Google Scholar
  44. Moore, J. N., Ficklin, W. H., & Johns, C. (1988). Partitioning of arsenic and metals in reducing sulfide sediments. Environmental Science and Technology, 22, 432–437.CrossRefGoogle Scholar
  45. Moormann, F. R., & Breemen, N. V. (1978). Rice: Soil, water, land (p. 171). Manila, Philippines: International Rice Research Institute.Google Scholar
  46. Morgan, J. P., & McIntire, W. G. (1959). Quaternary geology of the Bengal Basin, East Pakistan and India. Geological Society of America Bulletin, 70, 319–342.CrossRefGoogle Scholar
  47. Nickson, R., McArthur, J., Burgess, W., Ahmed, K. M., Ravenscroft, P., & Rahman, M. (1998). Arsenic poisoning of Bangladesh groundwater. Nature, 395, 338.CrossRefGoogle Scholar
  48. Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G., & Ahmed, K. M. (2000). Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry, 15, 403–413.CrossRefGoogle Scholar
  49. Norra, S., Berner, Z. A., Agarwala, P., Wagner, F., Chandrasekharam, D., & Stuben, D. (2005). Impact of irrigation with arsenic rich groundwater on soil and crops: A geochemical case study in West Bengal Delta Plain, India. Applied Geochemistry, 20, 1890–1906.CrossRefGoogle Scholar
  50. Polizotto, M. L., Harvvey, C. F., Sutton, S. R., & Fendorf, S. (2005). Processes conducive to release and transport of arsenic into aquifers of Bangladesh. Proceedings of the National Academy of Sciences, 102, 18819–18823.CrossRefGoogle Scholar
  51. Ravenscroft, P., McArthur, J. M., & Hoque, B. A. (2001). Geochemical and palaeohydrological controls on pollution of groundwater by arsenic. In W. R. Chappell, C. O. Abernathy, & R. L. Calderon (Eds.), Arsenic exposure and health effects (pp. 53–77). Oxford: IV Elsevier.Google Scholar
  52. Rowland, H. A. L., Polya, D. A., Lloyd, J. R., & Pancost, R. D. (2006). Characterization of organic matter in a shallow reducing, arsenic-rich aquifer, West Bengal. Organic Geochemistry, 37, 1101–1114.CrossRefGoogle Scholar
  53. Safiullah, S., Kabir, A., Tareq, S. M., Khan, M. M. K., & Alam, F. R. (1999). Removal of arsenic by composite porous materials based on Fe2O3–MnO2 laterite soil. Journal of the Bangladesh Chemical Society, 12(2), 185–192.Google Scholar
  54. Smedley, P. L., & Kinniburg, D. G. (2002). A review of the source behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.CrossRefGoogle Scholar
  55. Smith, E., Naidu, R., & Alston, A. M. (2002). Chemistry of inorganic arsenic in soils: II. Effect of phosphorous, sodium and calcium on arsenic sorption. Journal of Environment Quality, 31, 557–563.Google Scholar
  56. Stanley, D. J., & Warne, A. G. (1994). Worldwide initiation of Holocene marine deltas by deceleration of sea-level rise. Science, 265, 228–231.CrossRefGoogle Scholar
  57. Stollenwerk, K. G., Breit, G. N., Welch, A. H., Yount, J. C., Whitney, J. W., Foster, A. L., et al. (2007). Arsenic attenuation by oxidized aquifer sediments in Bangladesh. The Science of the Total Environment. doi: 10.101016/j.scitotenv.2006.11.029.
  58. Stuben, D., Berner, Z., Chandrasekharam, D., & Karmakav, J. (2003). Arsenic enrichment in groundwater of West Bengal, India: Geochemical evidence for mobilization of arsenic under reducing conditions. Applied Geochemistry, 18, 1417–1434.CrossRefGoogle Scholar
  59. Sullivan, K. A., & Aller, R. C. (1996). Diagenetic cycling of arsenic in Amazon Shelf sediments. Geochimica et Cosmochimica Acta, 60, 1465–1477.CrossRefGoogle Scholar
  60. Tareq, S. M., Safiullah, S., Anawar, H. M., Rahman, M. M., & Ishizuka, T. (2003). Arsenic pollution in groundwater: A self-organizing complex geochemical process in the deltaic sedimentary environment, Bangladesh. The Science of the Total Environment, 313, 213–226.CrossRefGoogle Scholar
  61. Taggart, J. E. (2002). Analytical methods for chemical analysis of geologic and other materials, U.S. Geological Survey, U.S. Geol. Sur. Open-file Report 02-223.Google Scholar
  62. Tucker, M. (2000). Techniques in sedimentology. UK: Blackwell Science.Google Scholar
  63. Uddin, A., & Lundberg, N. (1998). Cenozoic history of the Himalayan-Bengal system: Sand composition in the Bengal Basin, Bangladesh. Geological Society of America Bulletin, 110, 497–511.CrossRefGoogle Scholar
  64. Van Geen, A., Zheng, Y., Cheng, A., He, Y., Dhar, R. K., Garnier, J. M., et al. (2006). Impact of irrigating rice paddies with ground water containing arsenic in Bangladesh. The Science of the Total Environment, 367, 769–777.CrossRefGoogle Scholar
  65. Van Geen, A., Zheng, Y., Versteeg, R., Stute, M., Horneman, A., Dhar, R., et al. (2003) Spacial variability of arsenic in 6000 tubewells in a 25 km2 area of Bangladesh. Water Resources Research, 39(5), 1140.Google Scholar
  66. Williams, L. E., Barnett, M. O., Kramer, T. A., & Melville, J. G. (2003). Adsorption and transport of arsenic(V) in experimental subsurface systems. Journal of Environment Quality, 32, 841–850.CrossRefGoogle Scholar
  67. Yan, X.-P., Kerrich, R., & Hendry, M. J. (2000). Distribution of arsenic (3), arsenic (5) and total inorganic arsenic in pore waters from a thick till and clay rich aquitard sequence, Saskatchewan, Canada. Geochimica et Cosmochimica Acta, 62, 2637–2648.CrossRefGoogle Scholar
  68. Zahid, A., Balke, K.-D., Hassan, M. Q., & Flegr, M. (2006). Evaluation of aquifer environment under Hazaribagh leather processing zone of Dhaka city. Environmental Geology. doi: 10.1007/s00254-006-0225-1.
  69. Zhang, G. L., & Gong, Z. T. (2003). Pedogenic evolution of paddy soils in different soil landscapes. Geoderma, 115, 15–29.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Anwar Zahid
    • 1
    • 2
  • M. Q. Hassan
    • 1
  • G. N. Breit
    • 3
  • K.-D. Balke
    • 4
  • Matthias Flegr
    • 4
  1. 1.Department of GeologyUniversity of DhakaDhakaBangladesh
  2. 2.Ground Water Hydrology, Bangladesh Water Development BoardDhakaBangladesh
  3. 3.United States Geological Survey, Denver Federal CenterDenverUSA
  4. 4.Institute for Geology and PaleontologyUniversity of TuebingenTuebingenGermany

Personalised recommendations