Using urban man-made ponds to reconstruct a 150-year history of air pollution in northwest England

  • Ann L. Power
  • Ann T. Worsley
Original Paper


A regional pollution history has been reconstructed for the borough of Halton (northwest England) from four urban ponds in north Cheshire and south Merseyside, using environmental analyses of lake sediment stratigraphies. Mineral magnetism, geochemistry and radiometric dating have produced profiles of pollution characteristics dating from the mid-nineteenth century to present day. These pollution profiles reflect the atmospheric deposition of a range of pollutants over 150 years of intensified industry. Distinct phases of pollution deposition and characteristics are identified reflecting: (1) intensification of industry in the nineteenth century; (2) expansion of industry during the twentieth century; (3) post 1956 Clean Air Acts. This work promotes the potential use of these pollution archives for use in epidemiology to better understand links between human health and environmental pollution, especially for diseases with long latency times, where retrospective pollution exposure assessments are important.


Atmospheric particulate pollution Environmental magnetism Geochemistry Lake sediments Retrospective exposure 



This research forms part of the Research Development Programme funded by Edge Hill University and the National Health Service (Halton Primary Care Trust). Authors would like to thank Paul Oldfield (Halton Borough Council) for assistance with site identification, John Boyle (University of Liverpool) for expertise in XRF analysis, and Peter Appleby (University of Liverpool) for carrying out radiometric dating. Thanks are also extended to Fiona Riley and Amy Laurence (Edge Hill University) for assistance with poster design.


  1. Ahrens, W., & Stewart, P. (2003). Retrospective exposure assessment. In M. J. Nieuwenhuijsen (Ed.), Exposure assessment in occupational and environmental epidemiology (pp. 341–366). Oxford: Oxford University Press.Google Scholar
  2. Allen, A. G., Nemitz, E., Shi, J. P., Garrison, R. M., & Greenwood, J. C. (2001). Size distributions of trace metals in atmospheric aerosols in the United Kingdom. Atmospheric Environment, 35, 4581–4591.CrossRefGoogle Scholar
  3. Alloway, B. J., & Ayres, D. C. (1997). Chemical principles of environmental pollution. London: Blackie Academic and Professional.Google Scholar
  4. APHO & Department of Health (n.d.). Halton Health Profile 2007. Retrieved January 12, 2008 from
  5. Appleby, P. G., & Oldfield, F. (1983). The assessment of 210Pb data from sites with varying sediment accumulation rates. Hydrobiologia, 103, 29–35.CrossRefGoogle Scholar
  6. Appleby, P. G. (1993). Forward to the lead-210 dating anniversary series. Journal of Paleolimnology, 9, 155–160.CrossRefGoogle Scholar
  7. Appleby, P. G., Nolan, P. J., Gifford, D. W., Godfrey, D. W., Oldfield, F., Anderson, N. J., et al. (1986). 210Pb dating by blow background gamma counting. Hydrobiologia, 143, 21–27.CrossRefGoogle Scholar
  8. Booth, C. A., Shilton, V., Fullen, M. A., Walden, J., Worsley, A. T., & Power, A. L. (2006). Environmental magnetism: measuring, monitoring and modelling urban street dust pollution. In J. W. S. Longhurst & C. A. Brebbia (Eds.), Air pollution XIV (pp. 333–341). Southampton: WIT Press.CrossRefGoogle Scholar
  9. Boyle, J. F. (2000). Rapid elemental analysis of sediment samples by isotope source XRF. Journal of Palaeolimnology, 23, 213–221.CrossRefGoogle Scholar
  10. Brunekreef, B., & Holgate, S. T. (2002). Air pollution and health. The Lancet, 360, 1233.CrossRefGoogle Scholar
  11. Burgess, C., Crutchley, A., Clark, G., Davies, G., Gatrell, T., Pooley, C., Stelfox, M., Watson, N., Welshman, J. & Whyatt, D. (2003). Final report: Understanding the factors affecting health in Halton. Retrieved January 12, 2005 from Halton Borough Council website:
  12. Charlesworth, S. M., & Lees, J. A. (1997). The use of mineral magnetic measurements in polluted urban lakes and deposited dusts in Coventry, UK. Physics and Chemistry of the Earth, 22, 203–206.CrossRefGoogle Scholar
  13. Charlesworth, S. M., & Lees, J. A. (1999). The transport of particulate-associated heavy metals form source to deposit in the urban environment, Coventry, UK. The Science of the Total Environment, 235, 351–353.CrossRefGoogle Scholar
  14. Dearing, J. (1999). Magnetic susceptibility. In J. Walden, F. Oldfield, & J. P. Smith (Eds.), Environmental magnetism: A practical guide, technical guide no. 6 (pp. 35–62). Cambridge, England: Quaternary Research Association.Google Scholar
  15. Dekkers, M. J. (1997). Environmental magnetism: An introduction. Geologie en Mijnbouw, 76, 163–182.Google Scholar
  16. Dingle, A. E. (1982). The monster nuisance of all: Landowners, alkali manufacturers and air pollution, 1828–64. Economic History Review, 35, 529–548.Google Scholar
  17. Englert, N. (2004). Fine particulates and human health—A review of epidemiological studies. Toxicology Letters, 149, 235–242.CrossRefGoogle Scholar
  18. Flanders, P. J. (1994). Collection, measurement, and analysis of airborne magnetic particulates from pollution in the environment. American Institute of Physics, 75, 5931–5936.Google Scholar
  19. Gao, N., Hopke, P. K., & Reid, N. W. (1996). Possible sources for some trace elements found in airborne particles and precipitation in Dorset, Ontario. Air and Waste Management Association;, 46, 1035–1047.Google Scholar
  20. Griffin, J. J., & Goldberg, E. D. (1983). Impact of fossil fuel combustion on the lake sediments of Lake Michigan: A reprise. Environmental Science and Technology, 17, 244–245.CrossRefGoogle Scholar
  21. Halton Borough Council (2003). Contaminated land: strategy for inspection (Environmental Protection Act 1990: Part IIIA) Retrieved October 2, 2007, from Halton Borough Council website:
  22. Harrison, R. M. (2004). Key pollutants—Airborne particles. Science of the Total Environment, 334, 3–8.CrossRefGoogle Scholar
  23. Hodgson, S., Nieuwenhuijsen, M. J., Elliott, P., & Jarup, L. (2007). Kidney disease mortality and environmental exposure to mercury. American Journal of Epidemiology, 165, 72–77.CrossRefGoogle Scholar
  24. Hodgson, S., Nieuwenhuijsen, M. J., Hansell, A., Shepperd, S., Flute, T., Staples, B., et al. (2004). Excess risk of kidney disease in a population living near industrial plants. Occupational and Environmental Medicine, 61, 717–719.CrossRefGoogle Scholar
  25. Hunt, A. (1986). The application of mineral magnetic methods to atmospheric aerosol discrimination. Physics of the Earth and Planetary Interiors, 42, 10–21.CrossRefGoogle Scholar
  26. Hunt, A., Jones, J., & Oldfield, F. (1984). Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Science of the Total Environment, 33, 129–139.CrossRefGoogle Scholar
  27. Le Tertre, A., Medina, S., Samoli, E., Forsberg, B., Michelozzi, P., Boumghar, A., et al. (2002). Short-term effects of particulate air pollution on cardiovascular diseases in eight European cities. Journal of Epidemiology and Community Health, 56, 773–779.CrossRefGoogle Scholar
  28. Mamane, Y., Miller, J. L., & Dzubay, T. G. (1986). Characterisation of individual fly ash particles emitted from coal and oil fired power plants. Atmospheric Environment, 20, 2125–2135.CrossRefGoogle Scholar
  29. Meriläinen, J. J., Hnynen, J., Palomäki, A., Mäntykoski, K., & Witick, A. (2003). Environmental history of an urban lake: A palaeolimnological study of Lake Jyväsjärvi, Finland. Journal of Paleolimnology, 30, 387–406.CrossRefGoogle Scholar
  30. Morawska, L., & Zhang, J. (2002). Combustion sources of particles.1. Health relevance and source signatures. Chemosphere, 49, 1045–1058.CrossRefGoogle Scholar
  31. Morris, W. A., Versteeg, J. K., Bryant, D. W., Legzdins, A. E., McCarry, B. E., & Marvin, C. H. (1995). Preliminary comparisons between mutagenicity and magnetic susceptibility of respirable airborne particulate. Atmospheric Environment, 29, 3441–3450.CrossRefGoogle Scholar
  32. Muxworthy, A. R., Matzka, J., Davila, A. F., & Petersen, N. (2003). Magnetic signature of daily sampled atmospheric particulates. Atmospheric Environment, 37, 4163–4169.CrossRefGoogle Scholar
  33. Norton, S. A. (1986). A review of the chemical record in lake sediment of energy related air pollution and its effects on lakes. Water, Air and Soil Pollution, 30, 331–345.CrossRefGoogle Scholar
  34. Oberdörster, G. (2000). Toxicology of ultrafine particles: In vivo studies. Philosophical Transactions of the Royal Society of London A, 358, 2719–2740.CrossRefGoogle Scholar
  35. Oldfield, F. (1990). Magnetic measurements of recent sediments from Big Moose Lake, Adirondack Mountains, NY, USA. Journal of Paleolimnology, 4, 93–101.CrossRefGoogle Scholar
  36. Oldfield, F., & Appleby, P. G. (1984). Empirical testing of 210Pb-dating models for lake sediments. In E. Y. Haworth & J. W. G. Lund (Eds.), Lake sediments and environmental history (pp. 93–124). Leicester: Leicester University Press.Google Scholar
  37. Oldfield, F., Hunt, A., Jones, M. D. H., Chester, R., Dearing, J., Olsson, L., et al. (1985). Magnetic differentiation of atmospheric dusts. Nature, 317, 516–518.CrossRefGoogle Scholar
  38. Olsson, I. U. (1986). Radiometric dating. In B. E. Berglund (Ed.), Handbook of Holocene Palaeoecology (pp. 273–312). Chichester: Wiley.Google Scholar
  39. Pacyna, J. M. (1998). Sources inventories for atmospheric trace metals. In R. M. Harrison & R. Von Grieken (Eds.), IUPAC series on analytical and physical chemistry of environmental systems. Vol. 5: Atmospheric particles (pp. 95–146). Chichester: Wiley.Google Scholar
  40. Peled, R., Friger, M., Bolotin, A., Bibi, H., Epstein, L., Pilpel, D., et al. (2005). Fine particles and meteorological conditions are associated with lung function in children with asthma living near two power plants. Public Health, 199, 418–425.CrossRefGoogle Scholar
  41. Petrovskỳ, E., & Ellwood, B. (1999). Magnetic monitoring of air-, land- and water-pollution. In B. A. Maher & R. Thompson (Eds.), Quaternary climates, environments and magnetism (pp. 279–281). Cambridge: Cambridge University Press.Google Scholar
  42. Phalen, R. F. (2002). The particulate air pollution controversy: A case study and lessons learned. London: Kluwer Academic Publishers.Google Scholar
  43. Renberg, I. (1986). Concentration and annual accumulation values of heavy metals in lake sediments: Their significance in studies of the history of heavy metal pollution. Hydrobiologia, 143, 379–385.CrossRefGoogle Scholar
  44. Rose, N. L., & Harlock, S. (1998). The spatial distribution of characterized fly-ash particles and trace metals in lake sediments and catchment mosses in the United Kingdom. Water, Air and Soil Pollution, 106, 287–308.CrossRefGoogle Scholar
  45. Sainsbury, P., Hussey, R., Ashton, J., & Andrews, B. (1996). Industrial atmospheric pollution, historical land use patterns and mortality. Journal of Public Health Medicine, 18, 87–93.Google Scholar
  46. Smith, J. P. (1999). An introduction to the magnetic properties of natural minerals. In J. Walden, F. Oldfield, & J. P. Smith (Eds.), Environmental magnetism: A practical guide, technical guide no. 6 (pp. 5–26). Cambridge, England: Quaternary Research Association.Google Scholar
  47. Staples, B., Howse, M. L. P., Mason, H., & Bell, G. M. (2003). Land contamination and urinary abnormalities: Cause for concern? Occupational and Environmental Medicine, 60, 463–46737.CrossRefGoogle Scholar
  48. Stone, R. (2002). Counting the costs of London’s killer smog. Science, 298, 2106.CrossRefGoogle Scholar
  49. Thompson, R., & Oldfield, F. (1986). Environmental magnetism. London: Allen and Unwin.Google Scholar
  50. Verosub, K. L., & Roberts, A. P. (1995). Environmental magnetism: Past, present and future. Journal of Geophysical Research, 100, 2175–2192.CrossRefGoogle Scholar
  51. Veselý, J., Almquist-Jacobson, H., Miller, L. M., Norton, S. A., Appelby, P., Dixit, A. S., et al. (1993). The history and impact of air pollution on Čertovo lake, southwestern Czech Republic. Journal of Palaeolimnology, 8, 211–231.Google Scholar
  52. Worsley, A. T., Booth, C. A., & Power, A. L. (2005). Atmospheric pollution and human health: The significance of a datable sedimentary archive from small urban lakes in Merseyside, UK. In C. A. Brebbia, V. Popov, & D. Fayzieva (Eds.), Environmental health risk III (pp. 199–208). Southampton: WIT Press.Google Scholar
  53. Worsley, A. T., Power, A. L., & Booth, C. A. (2006). Air pollution records from urban lake sediments: The implications of datable, lacustrine sedimentary archives for epidemiology. In J. W. S. Longhurst & C. A. Brebbia (Eds.), Air pollution XIV (pp. 735–744). Southampton: WIT Press.CrossRefGoogle Scholar
  54. Xie, S., Dearing, J. A., & Bloemendal, J. (2000). The organic matter content of street dust in Liverpool, UK, and its association with dust magnetic properties. Atmospheric Environment, 34, 26–275.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Geography, Natural Geographical and Applied SciencesEdge Hill UniversityOrmskirkUK

Personalised recommendations