Environmental Geochemistry and Health

, Volume 31, Issue 4, pp 487–492 | Cite as

Low levels of toxic elements in Dead Sea black mud and mud-derived cosmetic products

Original Paper


Natural muds used as or in cosmetics may expose consumers to toxic metals and elements via absorption through the skin, inhalation of the dried product, or ingestion (by children). Despite the extensive therapeutic and cosmetic use of the Dead Sea muds, there apparently has been no assessment of the levels of such toxic elements as Pb, As, or Cd in the mud and mud-based products. Inductively coupled plasma mass spectrometry analysis of eight toxic elements in samples collected from three black mud deposits (Lisan Marl, Pleistocene age) on the eastern shore of the Dead Sea in Jordan revealed no special enrichment of toxic elements in the mud. A similar analysis of 16 different commercial Dead Sea mud cosmetics, including packaged mud, likewise revealed no toxic elements at elevated levels of concern. From a toxic element standpoint, the Dead Sea black muds and derivative products appear to be safe for the consumer. Whatever the therapeutic benefits of the mud, our comparison of the elemental fingerprints of the consumer products with those of the field samples revealed one disturbing aspect: Dead Sea black mud should not be a significant component of such items as hand creams, body lotions, shampoo, and moisturizer.


Black mud Cosmetics Dead Sea Facial masks Toxic metals 



The authors wish to thank Beata Maciejewska for performing the ICP-MS analyses in Prof. Pingitore’s Geochemistry Laboratory at UTEP.


  1. Abdel-Fattah, A., & Khoury, H. (2001). Textural, mineralogical, and geochemical characterization of the Dead Sea black mud and its relation to the mud’s curative properties; selected contributions to applied geology in the Jordan rift valley. Freiberger Forschungshefte, 494, 35–52.Google Scholar
  2. Abed, A. (1985). Geology of the Dead Sea, waters, salts, and evolution (in Arabic) (1st ed., p. 167). Jordan: Dar Al Arqam.Google Scholar
  3. Arab Potash Company (1991). Annual report. Amman: Arab Potash Company.Google Scholar
  4. CEM. (1994). Microwave sample preparation system (application manual). Matthews, North Carolina: CEM Corporation.Google Scholar
  5. Elzari-Volcani, B. (1936). Life in the Dead Sea. Nature, 138, 467–480.Google Scholar
  6. Elzari-Volcani, B. (1940). Studies on the microflora of the Dead Sea, Unpublished Ph.D thesis. Jerusalem: Hebrew University.Google Scholar
  7. Elzari-Volcani, B. (1943). Bacteria in bottom sediments of the Dead Sea. Nature, 152, 152–166.Google Scholar
  8. Florence, T., Lilley, S., & Stauber, J. (1988). Skin absorption of lead. Lancet, 2, 157–158. doi: 10.1016/S0140-6736(88)90702-7.CrossRefGoogle Scholar
  9. Florence, T., Stauber, J., Dale, L., Izard, B., & Belbin, K. (1996). Skin absorption of ionic lead compounds. Journal of the Australasian College of Nutritional and Environmental Medicine, 15, 11–19.Google Scholar
  10. Hardy, A., Sutherland, H., & Vaishnav, R. (2002). A study of the composition of some eye cosmetics (kohls) used in the United Arab Emirates. Journal of Ethnopharmacology, 80(2–3), 137–145. doi: 10.1016/S0378-8741(02)00006-5.CrossRefGoogle Scholar
  11. Hardy, A., Vaishnav, R., Al-Kharusi, S., Sutherland, H., & Worthing, M. (1998). Composition of eye cosmetics (kohls) used in Oman. Journal of Ethnopharmacology, 60(3), 223–234. doi: 10.1016/S0378-8741(97)00156-6.CrossRefGoogle Scholar
  12. Kanias, G. (1985). Determination of trace elements in eyeshadow face powder and rouge make-up cosmetics by neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 89(2), 487–496. doi: 10.1007/BF02040612.CrossRefGoogle Scholar
  13. Li, Y.-H. (2000). A compendium of geochemistry. Princeton: Princeton University Press.Google Scholar
  14. Lilley, S., Florence, T., & Stauber, J. (1988). The use of sweat to monitor lead absorption through the skin. The Science of the Total Environment, 76, 267–278. doi: 10.1016/0048-9697(88)90112-X.CrossRefGoogle Scholar
  15. Neev, D., & Emery, K. O. (1967). The Dead Sea, Israel Geological Survey Bulletin, 41, 147 pp.Google Scholar
  16. Nissenbaum, A. (1974). Trace elements in the Dead Sea sediments. Israel Journal of Earth Sciences, 23, 111–116.Google Scholar
  17. Nissenbaum, A., Rullkötter, J., & Yechieli, Y. (2002). Are the curative properties of “black mud” from the Dead Sea due to the presence of bitumen (asphalt) or other types of organic matter? Environmental Geochemistry and Health, 24, 327–335. doi: 10.1023/A:1020559717754.CrossRefGoogle Scholar
  18. Nnorom, I., Igwe, J., & Oji-Nnorom, C. (2005). Trace metal contents of facial (make-up) cosmetics commonly used in Nigeria. African Journal of Biotechnology, 4(10), 1133–1138.Google Scholar
  19. Oladipo, M., Lori, J., Bonire, J., & Ajayi, O. (1997). Trace element analysis of some shaving powders commonly marketed in Nigeria using instrumental neutron activation analysis. Journal of Radioanalytical and Nuclear Chemistry, 224(1–2), 167–170. doi: 10.1007/BF02034633.CrossRefGoogle Scholar
  20. Ouimesh, Y. (1996). Climatotherapy at the Dead Sea in Jordan. Clinics in Dermatology, 14, 659–664. doi: 10.1016/S0738-081X(96)00101-0.CrossRefGoogle Scholar
  21. Sainio, E., Jolanki, R., Hakala, E., & Kanerva, L. (2000). Metals and arsenic in eye shadows. Contact Dermatitis, 42(1), 5–10. doi: 10.1034/j.1600-0536.2000.042001005.x.CrossRefGoogle Scholar
  22. Stauber, J., Florence, T., Gulson, G., & Dale, L. (1994). Percutaneous absorption of inorganic lead compounds. The Science of the Total Environment, 145, 55–70. doi: 10.1016/0048-9697(94)90297-6.CrossRefGoogle Scholar
  23. Summa, V., & Tateo, F. (1999). Geochemistry of two peats suitable for medical uses and their behaviour during leaching. Applied Clay Science, 15(5–6), 477–489. doi: 10.1016/S0169-1317(99)00036-8.CrossRefGoogle Scholar
  24. Summa, V., & Tateo, F. (2007). Element mobility in clays for healing use. Applied Clay Science, 36(1–3), 64–76. doi: 10.1016/j.clay.2006.05.011.Google Scholar
  25. U. S. Environmental Protection Agency (EPA). (1994). Method 3051, Microwave assisted acid digestion of sediments, sludges, soil and oils, tests methods for evaluating solid waste (pp. 13151.1–93151.14). Washington D.C.: United States Environmental Protection Agency, Office of Solid Waste and Emergency Response.Google Scholar
  26. U.S. Food and Drug Administration (FDA). (1984). Listing of color additives exempt from certification. Code of federal regulations (Title 21, Vol. 1, Part 73 (21CFR73.2396)). Washington, D.C.: Federal Register.Google Scholar
  27. U.S. Food and Drug Administration (FDA). (2005). FDA authority over cosmetics, Center for food safety and applied nutrition, office of cosmetics. Fact sheet. Available at: http://vm.cfsan.fda.gov/~dms/cos-206.html. Accessed 3 August 2008.
  28. Vreca, P., & Dolenec, T. (2005). Geochemical estimation of copper contamination in the healing mud from Makirina Bay, central Adriatic. Environment International, 31(1), 53–61. doi: 10.1016/j.envint.2004.06.009.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Geological SciencesOhio UniversityAthensUSA
  2. 2.Department of Geological SciencesThe University of Texas at El PasoEl PasoUSA

Personalised recommendations