Advertisement

Environmental Geochemistry and Health

, Volume 29, Issue 6, pp 473–481 | Cite as

Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization

  • Ai-Jun Lin
  • Xu-Hong Zhang
  • Ming-Hung Wong
  • Zhi-Hong Ye
  • Lai-Qing Lou
  • You-Shan Wang
  • Yong-Guan Zhu
Original Paper

Abstract

A greenhouse pot experiment was conducted to investigate the effects of the colonization of arbuscular mycorrhizal fungus (AMF) Glomus mosseae on the growth and metal uptake of three leguminous plants (Sesbania rostrata, Sesbania cannabina, Medicago sativa) grown in multi-metal contaminated soil. AMF colonization increased the growth of the legumes, indicating that AMF colonization increased the plant’s resistance to heavy metals. It also significantly stimulated the formation of root nodules and increased the N and P uptake of all of the tested leguminous plants, which might be one of the tolerance mechanisms conferred by AMF. Compared with the control, colonization by G. mosseae decreased the concentration of metals, such as Cu, in the shoots of the three legumes, indicating that the decreased heavy metals uptake and growth dilution were induced by AMF treatment, thereby reducing the heavy metal toxicity to the plants. The root/shoot ratios of Cu in the three legumes and Zn in M. sativa were significantly increased (P < 0.05) with AMF colonization, indicating that heavy metals were immobilized by the mycorrhiza and the heavy metal translocations to the shoot were decreased.

Keywords

Sesbania Medicago sativa Glomus mosseae A. caulinodans Heavy metals 

Notes

Acknowledgements

This work was financially supported by the Research Grants Council (HKBU2181/03M), Hong Kong, China, the Ministry of Science and Technology (2002CB410808), China and the Young Scholars Fund of Beijing University of Chemical Technology, China (QN0603).

References

  1. Andrade, M. R., Farina, M., & Amado Filho, G. M. (2002). Role of Padina gymnospora (Dictyotales, Phaeophyceae) call walls in cadmium accumulation. Phycologia, 41, 39–48.Google Scholar
  2. Andrade, S. A. L., Abreu, C. A., de Abreu, M. F., & Silveira, A. P. D. (2004). Influence of lead additions on arbuscular mycorrhiza and rhizobium symbioses under soybean plants. Applied Soil Ecology, 26, 123–131.CrossRefGoogle Scholar
  3. Barea, J. M., Pozo, M. J., Azcón, R., & Azcón A. (2005). Microbial co-operation in the rhizosphere. Journal of Experimental Botany, 56, 1761–1778.CrossRefGoogle Scholar
  4. Chan, Y. S. G., Ye, Z. H., & Wong, M. H. (2003). Comparison of four Sesbania species to remediate Pb/Zn and Cu mine tailings. Environmental Management, 32, 246–251.CrossRefGoogle Scholar
  5. Chen, W., Bruhlmann, F., Richias, R. D., & Mulchandani, A. (1999). Engineering of improved microbes and enzymes for bioremediation. Current Opinion in Biotechnology, 10, 137–141.CrossRefGoogle Scholar
  6. Cui, Y. J., Zhu, Y.-G., Zhai, R. H., Chen, D. Y., Huang, Y. Z., Qiu, Y., & Liang, J. Z. (2004). Transfer of metals from soil to vegetables in an area near a smelter in Nanning, China. Environment International, 30, 785–791.CrossRefGoogle Scholar
  7. Gao, L., Miao, Z., Bai, Z., Zhou, X., Zhao, J., & Zhu, Y. (1998). A case study of ecological restoration at the Xiaoyi Bauxite Mine, Shanxi Province, China. Ecological Engineering, 11, 221–229.CrossRefGoogle Scholar
  8. Giovannetti, M., & Mosse, B. (1980). An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist, 84, 489–500.CrossRefGoogle Scholar
  9. Gupta, A. K., & Sinha, S. (2006). Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants. Chemosphere, 64, 161–173.CrossRefGoogle Scholar
  10. Ibekwe, A. M., Angle, J. S., Chaney, R. L., & Van-Berkum, P. (1995). Sewage sludge and heavy metal effects on nodulation and nitrogen fixation of legumes. Journal of Environmental Quality, 24,1199–1204.Google Scholar
  11. Karandashov, V., & Bucher, M. (2005). Symbiotic phosphate transport in arbuscular mycorrhizas. Trends in Plant Science, 10, 22–29.CrossRefGoogle Scholar
  12. Kotrba, P., Doleckova, L., Lorenzo, V., & Rumi, T. (1999). Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Applied and Environmental Microbiology, 65, 1092–1098.Google Scholar
  13. Liu, Y., Zhu, Y.-G., Chen, B. D., Christie, P., & Li, X. L. (2005). Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza, 15, 187–192.CrossRefGoogle Scholar
  14. Lowther, J. R. (1980). Use of a single sulfuric acid–hydrogen peroxide digest for the analysis of Pinus radiata needles. Communications in Soil Science and Plant Analysis, 11, 175–188.CrossRefGoogle Scholar
  15. Ma, Y., Dickinson, N. M., & Wong, M. H. (2006). Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings. Soil Biology & Biochemistry, 38, 1403–1412.CrossRefGoogle Scholar
  16. Payne, R. W., (Ed.), (2002). The guide to GenStat Release 6.1—Part 1: Syntax and data management. GenStat Committee. Hemel Hempstead, UK: VSN International.Google Scholar
  17. Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of British Mycological Society, 55, 158–160.CrossRefGoogle Scholar
  18. Pichtel, J., & Salt, C. A. (1998). Vegetative growth and trace metal accumulation on metalliferous wastes. Journal of Environmental Quality, 27, 618–642.CrossRefGoogle Scholar
  19. Smith, S. E., & Read, D. J. (1997). Mycorrhizal Simbiosis. London: Academic Press.Google Scholar
  20. Tiemann, K. J., Gardea-Torresdey, J. L., Gamez, G., Dokken, K., Sias, S., Renner, M. W., Furenlid, L. R. (1999). Use of X-ray absorption apectroscopy and esterification to investigate Cr(III) and Ni(II) ligands in Alfalfa biomass. Environmental Science & Technology, 33, 150–154.CrossRefGoogle Scholar
  21. Tordoff, G. M., Baker, A. J. M., & Willis, A. J. (2000). Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere, 41, 219–228.CrossRefGoogle Scholar
  22. Toro, M., Azcón, R., & Barea, J. M. (1998). The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhiza fungi, phosphate-solubilizing Rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytologist, 138, 265–273.CrossRefGoogle Scholar
  23. Vogel-Mikuš, K., Drobne, D., & Regvar, M. (2005). Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 133, 233–242.CrossRefGoogle Scholar
  24. Wong, M. H. (2003). Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50, 775–780.CrossRefGoogle Scholar
  25. Yang, Z. Y., Yuan, J. G., Xin, G. R., Chang, H. T., & Wong, M. H. (1997). Germination, growth and nodulation of Sesbania rostrata grown in Pb/Zn tailings. Environmental Management, 21, 1–6.CrossRefGoogle Scholar
  26. Ye, Z. H., Wong J. W. C., Wong, M. H., Lan, C. Y., & Baker, A. J. M. (2001a). Lime and pig manure as ameliorants for the revegetation on lead/zinc mine tailings, a greenhouse study. Bioresource Technology, 69, 35–45.CrossRefGoogle Scholar
  27. Ye, Z. H., Yang, Z. Y., Chan, G. Y. S., & Wong, M. H. (2001b). Growth response of Sesbania rostrata and S. cannabina to sludge-amended lead/zinc mine tailings. Environment International, 26, 449–455.CrossRefGoogle Scholar
  28. Zhang, X. H., Zhu Y.-G., Chen, B. D., Lin, A. J., Smith, S. E., & Smith, A. E. (2005). Arbuscular mycorrhizal fungi contribute to the resistance of upland rice to combined metal contamination of soil. Journal of Plant Nutrition, 28, 2065–2077.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Ai-Jun Lin
    • 1
    • 2
    • 3
  • Xu-Hong Zhang
    • 4
  • Ming-Hung Wong
    • 2
  • Zhi-Hong Ye
    • 5
  • Lai-Qing Lou
    • 2
  • You-Shan Wang
    • 6
  • Yong-Guan Zhu
    • 3
  1. 1.Department of Environmental Science and EngineeringBeijing University of Chemical TechnologyBeijingPR China
  2. 2.Croucher Institute for Environmental SciencesHong Kong Baptist UniversityHong KongPR China
  3. 3.Research Center for Eco-environmental SciencesChinese Academy of SciencesBeijingPR China
  4. 4.Beijing City UniversityBeijingPR China
  5. 5.State Key Laboratory for Bio-Control, School of Life ScienceSun Yat-sen (Zhongshan) UniversityGuangzhouPR China
  6. 6.The Institute of Plant Nutrition and ResourcesBeijing Academy of Agriculture and ForestBeijingPR China

Personalised recommendations