Advertisement

Environmental Geochemistry and Health

, Volume 29, Issue 3, pp 221–235 | Cite as

Mobilization of heavy metals from contaminated paddy soil by EDDS, EDTA, and elemental sulfur

  • Guoqing Wang
  • Gerwin F. Koopmans
  • Jing Song
  • Erwin J. M. Temminghoff
  • Yongming Luo
  • Qiguo Zhao
  • Jan Japenga
Original Paper

Abstract

For enhanced phytoextraction, mobilization of heavy metals (HMs) from the soil solid phase to soil pore water is an important process. A pot incubation experiment mimicking field conditions was conducted to investigate the performance of three soil additives in mobilizing HMs from contaminated paddy soil (Gleyi-Stagnic Anthrosol): the [S, S]-isomer of ethylenediamine disuccinate (EDDS) with application rates of 2.3, 4.3, and 11.8 mmol kg−1 of soil, ethylenediamine tetraacetate (EDTA; 1.4, 3.8, and 7.5 mmol kg−1), and elemental sulfur (100, 200, and 400 mmol kg−1). Temporal changes in soil pore water HM and dissolved organic carbon concentrations and pH were monitored for a period of 119 days. EDDS was the most effective additive in mobilizing soil Cu. However, EDDS was only effective during the first 24 to 52 days, and was readily biodegraded with a half-life of 4.1 to 8.7 days. The effectiveness of EDDS decreased at the highest application rate, most probably as a result of depletion of the readily desorbable Cu pool in soil. EDTA increased the concentrations of Cu, Pb, Zn, and Cd in the soil pore water, and remained effective during the whole incubation period due to its persistence. The highest rate of sulfur application led to a decrease in pH to around 4. This increased the pore water HM concentrations, especially those of Zn and Cd. Concentrations of HMs in the soil pore water can be regulated to a large extent by choosing the proper application rate of EDDS, EDTA, or sulfur. Hence, a preliminary work such as our pot experiment in combination with further plant experiments (not included in this study) will provide a good tool to evaluate the applicability of different soil additives for enhanced phytoextraction of a specific soil.

Keywords

Biodegradation Chelators Dissolved organic carbon Enhanced phytoextraction Mobility Soil pore water 

Notes

Acknowledgements

This work was funded by the Natural Science Foundation of China and Jiangsu province (project no. 40301046 and BK2004166), Chinese Ministry of Science and Technology (project no. 2004CB720403 and 2002CB410809), and the Royal Dutch Academy of Sciences (contract no. 04-PSA-E-05). Furthermore, the authors are thankful to Walter Schenkeveld for his critical comments on a previous version of this manuscript.

References

  1. Allison, L. E. (1965). Organic carbon. In: C. A. Black (Ed.), Methods of soil analysis. II. Agronomy Monograph 9 (pp. 1367–1378). Madison, WI: American Society of Agronomy.Google Scholar
  2. Baker, A. J. M. (1981). Accumulators and excluders—Strategies in the response of plants on heavy metals. Journal of Plant Nutrition, 3, 677–686.CrossRefGoogle Scholar
  3. Blaylock, M. J., Slat, D. E., Dushenkov, S., Zakharova, O., Gussman, C., Kapulnik, Y., Ensley, B. D., & Raskin, I. (1997). Enhanced accumulation of Pb in India mustard by soil-applied chelating agents. Environmental Science & Technology, 31, 860–865.CrossRefGoogle Scholar
  4. Bucheli-Witschel, M., & Egli, T. (2001). Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiological Review, 25, 69–106.CrossRefGoogle Scholar
  5. Chardot, V., Massoura, S. T., Echevarria, G., Reeves, R. D., & Morel, J. L. (2005). Phytoextraction potential of the nickel hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. International Journal of Phytoremediation, 7, 323–335.CrossRefGoogle Scholar
  6. Chen, H. M., Zheng, C. R., Zhou, D. M., & Wang, S. Q. (2004). Problems worthy of concern in soil environmental protection in China (In Chinese). Journal of Agro-Environmental Science, 2, 1244–1245.Google Scholar
  7. Chen, Y. H., Li, X. D., & Shen, Z. G. (2004). Leaching and uptake of heavy metals by ten different species of plants during an EDTA-assisted phytoextraction process. Chemosphere, 57, 187–196.CrossRefGoogle Scholar
  8. Cui, Y. S., Dong, Y. T., Li, H. F., & Wang, Q. R. (2004). Effect of elemental sulfur on solubility of soil heavy metals and their uptake by maize. Environment International, 30, 323–328.CrossRefGoogle Scholar
  9. Cunningham, S. D., & Ow, D. W. (1996). Promises and prospects of phytoremediation. Plant Physiology, 110, 715–719.Google Scholar
  10. Fest, E. P. M. J., Temminghoff, E. J. M., Griffioen, J., & Van Riemsdijk, W. H. (2005). Proton buffering and metal leaching in sandy soils. Environmental Science & Technology, 39, 7901–7908.CrossRefGoogle Scholar
  11. Grčman, H., Velikonja-Bolta, Š., Vodnic, D., & Leštan, D. (2001). EDTA enhanced heavy metal phytoextraction metal accumulation, leaching and toxicity. Plant and Soil, 235, 105–114.CrossRefGoogle Scholar
  12. Grčman, H., Vodnic, D., Velikonja-Bolta, Š., & Leštan, D. (2003). Ethylenediaminedissuccinate as a new chelate for environmentally safe enhanced lead phytoremediation. Journal of Environmental Quality, 32, 500–506.CrossRefGoogle Scholar
  13. Güçlü, K., & Apak, R. (2000). Modeling of copper(II), cadmium(II), and lead(II) adsorption on red mud from metal-EDTA mixture solutions. Journal of Colloid and Interface Science, 228, 238–252.CrossRefGoogle Scholar
  14. Hauser, L., Tandy, S., Schulin, R., & Nowack, B. (2005). Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS. Environmental Science & Technology, 39, 6819–6824.CrossRefGoogle Scholar
  15. Huang, J. W. W., Chen, J. J., Berti, W. R., & Cunningham, S. D. (1997) Phytoremediation of lead-contaminated soils: Role of synthetic chelates in lead phytoextraction. Environmental Science & Technology, 31, 800–805.CrossRefGoogle Scholar
  16. Japenga, J., Koopmans, G. F., Song, J., & Römkens, P. F. A. M. (2007). A feasibility test to estimate the duration of phytoextraction of heavy metals from polluted soils. International Journal of Phytoremediation, 9, doi: 10.1080/15226510701232773. Google Scholar
  17. Jaworska, J. S., Schowanek, D., & Feijtel, T. C. J. (1999). Environmental risk assessment for trisodium [S,S]-ethylene diamine disuccinate, a biodegradable chelator used in detergent applications. Chemosphere, 38, 3597–3625.CrossRefGoogle Scholar
  18. Jung, S. J., Jang, K. H., Sihn, E. H., Park, S. K., & Park, C. H. (2005) Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. Journal of Microbiology and Biotechnology, 15, 716–721.Google Scholar
  19. Kayser, A., Wenger, K., Keller, A., Attinger, W., Felix, H. R., Gupta, S. K., & Schulin, R. (2000). Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: The use of NTA and sulfur amendments. Environmental Science & Technology, 34, 1778–1783.CrossRefGoogle Scholar
  20. Kim, C., Lee, Y., & Ong, S. K. (2003). Factors affecting EDTA extraction of lead from lead-contaminated soils. Chemosphere, 51, 845–853.CrossRefGoogle Scholar
  21. Koopmans, G. F., McDowell, R. W., Chardon, W. J., Oenema, O., & Dolfing, J. (2002). Soil phosphorus quantity-intensity relationships to predict increased soil phosphorus loss to overland and subsurface flow. Chemosphere, 48, 679–687.CrossRefGoogle Scholar
  22. Koopmans, G. F., Römkens, P. F. A. M., Song, J., Temminghoff, E. J. M., Japenga, J. (2007). Predicting the phytoextraction duration of heavy metal contaminated soils. Water Air & Soil Pollution, doi: 10.1007/s11270-006-9307-7.Google Scholar
  23. Kos, B., & Leštan, D. (2003a). Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environmental Science & Technology, 37, 624–629.CrossRefGoogle Scholar
  24. Kos, B., & Leštan, D. (2003b). Influence of a biodegradable ([S, S]-EDDS) and nondegradable (EDTA) chelate and hydrogel modified soil water sorption capacity on Pb phytoextraction and leaching. Plant and Soil, 253, 403–411.CrossRefGoogle Scholar
  25. Kos, B., & Leštan, D. (2004). Chelator induced phytoextraction and in situ washing of Cu. Environmental Pollution, 132, 333–339.CrossRefGoogle Scholar
  26. Luo, C. L., Shen, Z. G., & Li, X. D. (2005). Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere, 59, 1–11.CrossRefGoogle Scholar
  27. Madrid, L., & Diaz-Barrientose, E. (1992). Influence of carbonate on the reaction of heavy-metals in soils. European Journal of Soil Science, 43, 709–721.CrossRefGoogle Scholar
  28. Marchiol, L., Sacco, P., Assolari, S., & Zerbi, G. (2004). Reclamation of polluted soil: Phytoremediation potential of crop-related Brassica species. Water, Air, & Soil Pollution, 158, 345–356.CrossRefGoogle Scholar
  29. Martell, A. E., Smith, R. M., & Motekaitis, R. J. (1989). NIST Critically Selected Stability Constants of Metal Complexes, Version 6.0. Gaithersburg, MD: National Institute of Standards and Technology.Google Scholar
  30. Meers, E., Ruttens, A., Hopgood, M. J., Samson, D., & Tack, F. M. G. (2005). Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere, 58, 1011–1022.CrossRefGoogle Scholar
  31. Metsärinne, S., Tuhkanen, T., & Aksela, R. (2001). Photodegradation of ethylenediaminetetraacetic acid (EDTA) and ethylenediamine disuccinic acid (EDDS) within natural UV radiation range. Chemosphere, 45, 949–955.CrossRefGoogle Scholar
  32. Moser, U. S., & Olson, R. V. (1953). Sulfur oxidation in 4 soils as influenced by soil moisture tension and sulfur bacteria. Soil Science, 76, 251–257.CrossRefGoogle Scholar
  33. Nowack, B., Lutzenkirchen, T., Behra, P., & Sigg, L. (1996). Modeling the adsorption of metal-EDTA complexes onto oxides. Environmental Science & Technology, 30, 2397–2405.CrossRefGoogle Scholar
  34. Papassiopi, N., Tambouris, S., & Kontopoulos, A. (1999). Removal of heavy metals from calcareous contaminated soils by EDTA leaching. Water, Air, & Soil Pollution, 109, 1–15.CrossRefGoogle Scholar
  35. Raskin, I., Smith, R. D., & Salt, D. E. (1997). Phytoremediation of metals: Using plants to remove pollutants from the environment. Current Opinion in Biotechnology, 8, 221–226.CrossRefGoogle Scholar
  36. Salam, A. K., & Helmke, P. A. (1998). The pH dependence of free ionic activities and total dissolved concentrations of copper and cadmium in soil solution. Geoderma, 83, 281–291.CrossRefGoogle Scholar
  37. Salazar, F. S., Pandey, S., Narro, L., Perez, J. C., Ceballos, H., Parentoni, S. N., & Bahia, A. F. C. (1997). Diallel analysis of acid-soil tolerant and intolerant tropical maize populations. Crop Science, 37, 1457–1462.CrossRefGoogle Scholar
  38. Schowanek, D., Feijtel, T. C. J., Perkins, C. M., Hartman, F. A., Federle, T. W., & Larson, R. J. (1997). Biodegradation of [S,S], [R,R] and mixed stereoisomers of ethylene diamine disuccinic acid (EDDS), a transition metal chelator. Chemosphere, 34, 2375–2391.CrossRefGoogle Scholar
  39. Slaton, N. A., Norman, R. J., & Gilmour, J. T. (2001). Oxidation rates of commercial elemental sulfur products applied to an alkaline silt loam from Arkansas. Soil Science Society of America Journal, 65, 239–243.CrossRefGoogle Scholar
  40. Sun, B., Zhao, F. J., Lombi, E., & McGrath, S. P. (2001). Leaching of heavy metals from contaminated soils using EDTA. Environmental Pollution, 113, 111–120.CrossRefGoogle Scholar
  41. Tandy, S., Bossart, K., Mueller, R., Ritschel, J., Hauser, L., Schulin, R., & Nowack, B. (2004). Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science & Technology, 38, 937–944.CrossRefGoogle Scholar
  42. Tandy, S., Ammann, A., Schulin, R., & Nowack, B. (2006). Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing. Environmental Pollution, 142, 191–199.CrossRefGoogle Scholar
  43. Vandevivere, P., Hammes, F., Verstraete, W., Feijtel, T. C. J., & Schowanek, D. (2001). Metal decontamination of soil, sediment, and sewage sludge by means of transition metal chelant [S,S]-EDDS. Journal of Environmental Engineering, 127, 802–811.CrossRefGoogle Scholar
  44. Vandevivere, P., Saveyn, H., Verstraete, W., Feijtel, T. C. J., & Schowanek, D. R. (2001). Biodegradation of metal-[S, S]-EDDS complexes. Environmental Science & Technology, 35, 1765–1770.CrossRefGoogle Scholar
  45. Weng, L. P., Temminghoff, E. J. M., & van Riemsdijk, W. H. (2001). Contribution of individual sorhents to the control of heavy metal activity in sandy soil. Environmental Science & Technology, 35, 4436–4443.CrossRefGoogle Scholar
  46. Zhao, F. J., Lombi, E., & McGrath, S. P. (2003). Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249, 37–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Guoqing Wang
    • 1
    • 2
  • Gerwin F. Koopmans
    • 3
  • Jing Song
    • 1
  • Erwin J. M. Temminghoff
    • 3
  • Yongming Luo
    • 1
    • 2
  • Qiguo Zhao
    • 1
    • 2
  • Jan Japenga
    • 4
  1. 1.Soil and Environment Bioremediation Research Centre, Institute of Soil ScienceChinese Academy of SciencesNanjingP.R. China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingP.R. China
  3. 3.Department of Soil QualityWageningen University, Wageningen University and Research Centre (WUR)WageningenThe Netherlands
  4. 4.Alterra, WURWageningenThe Netherlands

Personalised recommendations