Skip to main content

Advertisement

Log in

Arsenic accumulation by ferns: a field survey in southern China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The objective of this study reported here was to characterize arsenic (As) accumulation by Pteris ferns by comparing 3 of the ferns of this genus with each other as well as with four non-Pteris ferns growing on seven sites in southern China with different As levels. A total of 112 samples, including 78 Pteris vittata, 13 P. cretica, 3 P. multifida and 18 ferns from other non-Pteris genera, with the soils in which they grew were collected for As and other elemental analyses. P. vittata was found to be the most dominant species and the most efficient As-accumulator, whereas P. multifida was the lowest As-accumulator among the Pteris ferns, with 4.54–3599, 28.7–757 and 11.2–341 mg kg–1 As recorded in the fronds of P. vittata, P. cretica and P. multifida, respectively. Arsenic concentrations in non-Pteris ferns were generally much lower than those in Pteris ferns, with 0.81–1.32, 3.59, 10.7, 6.17–24.3 mg kg–1 in the fronds of Blechumum orientale, Dicranopteris dichotoma, Pteridium aquilinum and Cyclosorus acuminatus, respectively. For P. vittata, the As bioaccumulation factor (ratio of As in fronds to that in soils) changed, whereas the As translocation factor (ratio of As in fronds to that in roots) remained unchanged among the different sites. The concentrations of Fe were very high in all of the collected fern sample, with the exception of B.␣orientale, with 207–6865, 637–3369, 375–1856, 1876, 493-6865 and 492 mg kg–1 in the fronds of P. vittata, P. cretica, P. multifida, C. acuminatus, P. aquilinum and D. dichotoma, respectively. The association between Fe accumulation and As accumulation and tolerance in these ferns indicates the unique role of Fe in As-hyperaccumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrea, L. H., Malcolm, R. S., Damien, J., Klerk, W., Bastone, E. B., Gerostamoulos, J., & Drummer, O. H. (2004). Exposure to inorganic arsenic in soil increases urinary inorganic arsenic concentrations of residents living in old mining areas. Environ Geochem Health, 26, 27–36.

    Article  Google Scholar 

  • Baker, A. J. M. (1989). Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery,1, 81–126.

    Google Scholar 

  • Bech, J., Poschenrieder, C., Llugany, M., Barcelo, J., Thume, P., & Toloias, F. J. (1997). As and heavy metal contamination of soil and vegetation around a copper mine in Northern Peru. The Sci Total Environ, 203, 83–91.

    Article  Google Scholar 

  • Bondada, B. R., Tu, S., & Ma, L. Q. (2004). Absorption of foliar-applied As by the As hyperaccumulating fern (Pteris vittata L.). The Sci Total Environ, 332, 61–70.

    Article  Google Scholar 

  • Caille, N., Swanwick, S., Zhao, F. J., & McGrath, S. P. (2004). Arsenic hyperaccumulation by Pteris vittata from arsenic contaminated soils and the effect of liming and phosphate fertilization. Environ Pollut, 132, 113–120.

    Article  Google Scholar 

  • Cao, X. D., Ma, L. Q., & Tu, C. (2004). Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut, 128, 317–325.

    Article  Google Scholar 

  • Cao, X. D., Ma, L. Q., & Shiralipour, A. (2003). Effects of compost and phosphate amendments on arsenic mobility in soils and arsenic uptake by the hyperaccumulator Pteris vittata L. Environ Pollut, 126, 157–167.

    Article  Google Scholar 

  • Chang, S., & Jackson, M. L. (1957). Fractionation of soil phosphorus. Soil Sci, 84, 133–144.

    Article  Google Scholar 

  • Chen, T. B., Wei, C. Y., Huang, Z. C., Huang, Q. F., & Lu, Q. G. (2002). Arsenic hyperaccumulator Pteris vittata L. and its arsenic accumulation. Chin Sci Bull, 47, 902–905.

    Article  Google Scholar 

  • Chen, T. B., Zhang, B. C., Huang, Z. C., Liu, Y. R., Zheng, Y. M., Lei, M., Liao, X. Y., & Piao, S. J. (2005). Geographical distribution and characteristics of habitat of As-hyperaccumulator Pteris vittata L. in China(in Chinese). Geogr Res, 24, 825–833.

    Google Scholar 

  • Cheng, S. (2003).Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res, 10, 192–198.

    Article  Google Scholar 

  • De Koe (1994). Agrostic castellana and Agrostis delicatula on heavy metal and arsenic enriched sites in NE Portugal. The Sci Total Environ, 145, 103–109.

  • Du, W. B., Li, Z. A., Zou, B., & Peng, S. L. (2005). Pteris multifida poir., a new arsenic hyperaccumulator: characteristics and potential. Int J Environ Pollut, 23, 388–396.

    Article  Google Scholar 

  • Duan, G. L., Zhu, Y. G., Tong, Y. P., Cai, C., & Kneer, R. (2005). Characterization of arsenate reductase in the extract of roots and fronds of Chinese brake fern, an␣arsenic hyperaccumulator. Plant Physiol, 138, 461–469.

    Article  Google Scholar 

  • Fitz, W. J., Wenzel, W. W., Zhang, H., Nurmi, J., Stipek, K., Fischerova, Z., Schweiger, P., Kollensperger, G., Ma, L. Q., & Stingeder, G. (2003). Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency.␣Environ Sci Technol, 37, 5008–5014.

    Article  Google Scholar 

  • Francesconi, K., Visoottiviseth, P., Sridokchan, W., & Goessler, W. (2002) Arsenic species in an As hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of As-contaminated soils. The Sci Total Environ, 284, 27–35.

    Article  Google Scholar 

  • Jones, Jr J. B. (1998). Plant nutrition manual. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. (3rd ed.), Boca Raton: CRC Press

    Google Scholar 

  • Liao, X.Y., Xiao X.Y., Xiao, X.Y., Chan T.B. (2003) Effects of Ca and As addition on As, P and Ca uptake by hyperaccumulator Pteris vittata L. under sand culture (in Chinese). Acta Ecologica Sinica, 3, 2057–2065

    Google Scholar 

  • Liao, Z. J. (1989). The contamination and hazardousness of heavy metals in the environment (in Chinese). Beijing: Science Press.

    Google Scholar 

  • Ma, L. Q., Kenneth, M. K., & Tu, C. (2001). A fern that hyperaccumulating arsenic. Nature, 409, 579.

    Article  Google Scholar 

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58, 201–235.

    Article  Google Scholar 

  • Mandal, B. K., Chowdhury, T. R., Samanta, G., Basu, G. K., Chowdhury, P. P., Chanda, C. R., Lodh, D., Karan, N. K., Dhar, R. K., Tamili, D. K., Das, D., Saha, K. C., & Chakraborti, D. (1996). Arsenic in groundwater in seven districts of West Bengal, India-the biggest arsenic calamity in the world. Curr Sci, 70, 976–986.

    Google Scholar 

  • Matera, V., Le Hecho, I., Laboudigue, A., Thomas, P., Tellier, S., & Astruc, M. (2003). A methodological approach for the identification of As bearing phases in polluted soils. Environ Pollut, 126, 51–64.

    Article  Google Scholar 

  • McLaren, R. G., Naidu, R., Smith, J., & Tiller, K. G. (1998). Fractionation and distribution of As in soils contaminated by cattle dip. J Environ Qual, 27, 348–354.

    Article  Google Scholar 

  • Meharg, A. A. (2003). Variation in As accumulation- hyperaccumulation in ferns and their allies. New Phytologist, 157, 25–31.

    Google Scholar 

  • Meharg, A. A., Naylor, J., & Macnair, M. R. (1994). Phosphorus nutrition of arsenate-tolerant and non-tolerant phenotypes of velvet grass. J Environ Qual, 23, 234–238.

    Google Scholar 

  • Nordstrom, D. K. (2002). Worldwide occurrences of As in ground water. Science, 296, 2143–2144.

    Article  Google Scholar 

  • Patel, K. S., Shrivas, K., Brandt, R. N., Jakubowski, W. C., & Hoffmann, P. (2005). Arsenic contamination in water, soil, sediment and rice of central India. Environ Geochem Health, 27, 131–145.

    Article  Google Scholar 

  • Porter, E. K., & Peterson, P. J. (1975). Arsenic accumulation by plants on mine waste (United Kingdom). The Sci Total Environ, 4, 365–371.

    Article  Google Scholar 

  • Porter, E. K., & Peterson, P. J. (1977). Arsenic tolerance in␣grasses growing on mine waste. Environ Pollut, 14, 255–265.

    Article  Google Scholar 

  • Tu, C., & Ma, L. Q. (2003). Effects of arsenate and phosphate on their accumulation by an arsenic– hyperaccumulator Pteris vittata L. Plant and Soil, 249, 373–382.

    Article  Google Scholar 

  • Tu, C., & Ma, L. Q. (2005). Effects of arsenic on concentration and distribution of nutrients in the fronds of␣the arsenic hyperaccumulator Pteris vittata L. Environ Pollut, 135, 333–340.

    Article  Google Scholar 

  • Visoottiviseth, P., Francesconi, K., & Sridokchan, W. (2002). The potential of Thai indigenous plant species for the phytormediation of As contaminated land. Environ Pollut, 118, 453–461.

    Article  Google Scholar 

  • Wang, H. B., Ye, Z. H., Shu, W. S., Li, W. C., Wong, M. H., & Lan, C. Y. (2006). Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of southern china: field surveys. Int J Phytoremediation, 8, 1–11.

    Article  Google Scholar 

  • Wei, C. Y., Chen, T. B., Huang, Z. C., & Zhang, X. Q. (2002). Cretan brake—an arsenic-accumulating plant (in Chinese). Acta Ecologica Sinica, 22, 776–778.

    Google Scholar 

  • Wei, C. Y., & Chen, T. B. (2006). Arsenic accumulation by two brake ferns growing on an arsenic mine and their␣potential in phytoremediation. Chemosphere, 63, 1048–1053.

    Google Scholar 

  • Wei, C. Y., Sun, X., Wang, C., & Wang W. Y. (2006). Factors influencing arsenic accumulation by Pteris vittata: a comparative field study at two sites. Environ Pollut, 141, 488–493.

    Google Scholar 

  • Xiong, Y. (1987). Soils in China (in Chinese). Beijing: China Science Press.

    Google Scholar 

  • Yang, L. S., Peterson, P. J., Williams, W. P., Wang, W. Y., Hou, S. F., & Tan, J. A. (2002). The relationship between exposure to arsenic concentrations in drinking water and the development of skin lesions in farmers from Inner Mongolia, China. Environ Geochem Health, 24, 293–303.

    Article  Google Scholar 

  • Zhang, W., Cai, Y., Tu, C., & Ma, L. Q. (2002) As speciation and distribution in an As hyperaccumulating plant. The Sci Total Environ, 300, 167–177.

    Article  Google Scholar 

  • Zhao, F. J., Duham, S. J., McGrath, S. P. (2002) As hyperaccumulation by different fern species. New Phytologist, 156, 27–31.

    Article  Google Scholar 

Download references

Acknowledgements

This study was jointly supported by the National Natural Science Foundation of China (Grant No. 40271099, 20477045), the Renovation Project of the Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences (Grant No. CXIOG-C04-02), and the National Fund for Distinguished Young Scholars (Grant No. 40325003). CY Wei thanks Prof. L Shi and XC Zhang from the Institute of Botany, Chinese Academy of Sciences for their kind advice on fern sampling and help with fern identification.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Yang Wei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, CY., Wang, C., Sun, X. et al. Arsenic accumulation by ferns: a field survey in southern China. Environ Geochem Health 29, 169–177 (2007). https://doi.org/10.1007/s10653-006-9046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-006-9046-0

Keywords

Navigation