Characteristics of breaking vorticity in spilling and plunging waves investigated numerically by SPH

Abstract

The present paper, places emphasis on the vorticity induced by wave breaking, which greatly contributes to sediments pick up and suspension as well as to air–water exchange at the wave interface, thus deserving a thorough study. A weakly-compressible smoothed particle (WCSPH) model, coupled with a two-equation model for turbulent stresses, has been employed for this scope. A careful calibration of the SPH’s numerical parameters has been first performed, based on experiments carried out in a sloped wave channel, specifically using wave elevation and velocity data. Once proved the reliable performance of the model, the characteristics of vorticity induced just prior and post breaking for both the cases of a spilling and a plunging wave have been numerically studied. The main and detailed results indicate that for both the types of breakers there is a cause-effect relation observed between the stream wise flow deceleration and the vorticity generation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

References

  1. 1.

    Altomare C, Dominguez JM, Crespo AJC, Gonzalez-Cao J, Suzuki T, Gómez-Gesteira M, Troch P (2017) Long-crested wave generation and absorption for SPH-based dualsphysics model. Coast Eng 127:37–54

    Google Scholar 

  2. 2.

    Altomare C, Tagliafierro B, Dominguez JM, Suzuki T, Viccione G (2018) Improved relaxation zone method in SPH-based model for coastal engineering applications. Appl Ocean Res 2018(81):15–33

    Google Scholar 

  3. 3.

    Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183:2570–2580

    Google Scholar 

  4. 4.

    Aristodemo F, Marrone S, Federico I (2015) SPH modeling of plane jets into water bodies through an inflow/outflow algorithm. Ocean Eng 105:160–175

    Google Scholar 

  5. 5.

    Aristodemo F, Tripepi G, Meringolo DD, Veltri P (2017) Solitary wave-induced forces on horizontal circular cylinders: laboratory experiments and SPH simulations. Coast Eng 129:17–35

    Google Scholar 

  6. 6.

    Basco RD (1985) A qualitative description of wave breaking. J Waterw Port Coast Ocean Eng ASCE 111:171–188

    Google Scholar 

  7. 7.

    Battjes JA (1988) Surf-zone dynamics. Annu Rev Fluid Mech 20:257–293

    Google Scholar 

  8. 8.

    Briganti R, Torres-Freyermuth A, Baldock TE, Brocchini M, Dodda N, Hsue TJ, Jiangc Z, Kime Y, Pintado-Patiño JC, Postacchini M (2016) Advances in numerical modelling of swash zone dynamics. Coast Eng 115:26–41

    Google Scholar 

  9. 9.

    Capone T, Panizzo A, Monaghan JJ (2010) SPH modelling of water waves generated by submarine landslides. J Hydraul Res 48:80–84

    Google Scholar 

  10. 10.

    Chalikov D, Babanin AV (2012) Simulation of wave breaking in one-dimensional spectral environment. J Phys Oceanogr 42(11):1745–1761

    Google Scholar 

  11. 11.

    Chang KA, Liu PF (1998) Velocity, acceleration and vorticity under a breaking wave. Phys Fluids 10(1):327–329

    Google Scholar 

  12. 12.

    Chiapponi M, Cobos MA, Losada S (2017) Longo Cross-shore variability and vorticity dynamics during wave breaking on a fixed bar. Coast Eng 127:119–133

    Google Scholar 

  13. 13.

    Christensen ED (2006) Large eddy simulation of spilling and plunging breakers. Coast Eng 53:463–485

    Google Scholar 

  14. 14.

    Dabiri D, Gharib M (1997) Experimental Investigation of the vorticity generation within a spilling water wave. J Fluid Mech 330:113–139

    Google Scholar 

  15. 15.

    Dalrymple RA, Rogers BD (2006) Numerical modelling of waves with the SPH method. Coast Eng 53:131–147

    Google Scholar 

  16. 16.

    Dao MH, Xu H, Chan ES, Tkalich P (2013) Modelling of tsunami-like wave run-up, breaking and impact on a vertical wall by SPH method. Natl Hazards Earth Syst Sci 13(12):3457–3467

    Google Scholar 

  17. 17.

    De Padova D, Mossa M, Sibilla S, Torti E (2013) 3D SPH modelling of hydraulic jump in a very large channel. J Hydraul Res 51:158–173

    Google Scholar 

  18. 18.

    De Padova D, Dalrymple RA, Mossa M (2014) Analysis of the artificial viscosity in the smoothed particle hydrodynamics modelling of regular waves. J Hydraul Res 52:836–848

    Google Scholar 

  19. 19.

    De Padova D, Mossa M, Sibilla S (2016) SPH numerical investigation of the velocity field and vorticity generation within a hydrofoil-induced spilling breaker. Environ Fluid Mech 16:267–287

    Google Scholar 

  20. 20.

    De Padova D, Mossa M, Sibilla S (2017) SPH modelling of hydraulic jump oscillations at an abrupt drop. Water 9(10):790. https://doi.org/10.3390/w9100790

    Article  Google Scholar 

  21. 21.

    De Padova D, Mossa M, Sibilla S (2018) SPH numerical investigation of characteristics of hydraulic jumps. Environ Fluid Mech. https://doi.org/10.1007/s10652-017-9566-4

    Article  Google Scholar 

  22. 22.

    De Padova D, Mossa M, Sibilla S (2018) SPH numerical investigation of the characteristics of an oscillating hydraulic jump at an abrupt drop. J Hydrodyn 30:106. https://doi.org/10.1007/s42241-018-0011-z

    Article  Google Scholar 

  23. 23.

    De Padova D, Brocchini M, Buriani F, Corvaro S, De Serio F, Mossa M, Sibilla S (2018) Experimental and numerical investigation of pre-breaking and breaking vorticity within a plunging breaker. Water 10(4):387. https://doi.org/10.3390/w10040387

    Article  Google Scholar 

  24. 24.

    De Serio F, Mossa M (2006) Experimental study on the hydrodynamics of regular breaking waves. Coast Eng 53:99–113

    Google Scholar 

  25. 25.

    Espa P, Sibilla S, Gallati M (2008) SPH simulations of a vertical 2-D liquid jet introduced from the bottom of a free-surface rectangular tank. Adv Appl Fluid Mech 3:105–140

    Google Scholar 

  26. 26.

    Federico I, Marrone S, Colagrossi A, Aristodemo F, Antuono M (2012) Simulating 2D open-channel flows through an SPH model. Eur J Mech B/Fluids 34:35–46

    Google Scholar 

  27. 27.

    Fulk A, Quinn DW (1995) An analysis of 1-D smoothed particle hydrodynamics kernels. J Comput Phys 126:165–180

    Google Scholar 

  28. 28.

    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to nonspherical stars. Mon Not R Astron Soc 181:375–389

    Google Scholar 

  29. 29.

    Gomez-Gesteira M, Rogers BD, Darlymple RA, Crespo AJC (2010) State-of-the-art of classical SPH for free-surface flows. J Hydraul Res 48:6–27

    Google Scholar 

  30. 30.

    Grenier N, Touze Le, Colagrossi D, Antuono M, Colicchio G (2013) Viscous bubbly flow simulation with an interface SPH model. Ocean Eng 69:88–102

    Google Scholar 

  31. 31.

    Hattori M, Aono T (1985) Experimental study on turbulence structures under breaking waves. Coast Eng Jpn 28:97–116

    Google Scholar 

  32. 32.

    Huang C, Zhang DH, Si YL, Shi YX, Lin YG (2018) Coupled finite particle method for simulations of wave and structure interaction. Coast Eng. https://doi.org/10.1016/j.coastaleng.2018.07.003

  33. 33.

    Kazakova M, Richard GL (2019) A new model of shoaling and breaking waves: one-dimensional solitary wave on a mild sloping beach. J Fluid Mech 862:552–559

    Google Scholar 

  34. 34.

    Kazolea M, Ricchiuto M (2018) On wave breaking for Boussinesq-type models. Ocean Modell 123:16–39

    Google Scholar 

  35. 35.

    Kennedy AB, Chen Q, Kirby JT, Dalrymple RA (2000) Boussinesq modelling of wave transformation, breaking. and runup. J Waterway Port Coast Ocean Eng 126:39–47

    Google Scholar 

  36. 36.

    Kirby JT (2017) Recent advances in nearshore wave, circulation, and sediment transport modelling. J Mar Res 75(3):263–300

    Google Scholar 

  37. 37.

    Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Meth Eng 3:269–289

    Google Scholar 

  38. 38.

    Lin J, Rockwell D (1994) Instantaneous structure of a breaking wave. Phys Fluids 6(9):2877–2879

    Google Scholar 

  39. 39.

    Liu GR, Liu MB (2010) Smoothed Particle Hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76

    Google Scholar 

  40. 40.

    Longo S (2003) Turbulence under spilling breakers using discrete wavelets. Exp Fluids 43(2):181–191

    Google Scholar 

  41. 41.

    Longo S (2009) Vorticity and intermittency within the pre-breaking region of spilling breakers. Coast Eng 56:285–296

    Google Scholar 

  42. 42.

    Longo S, Petti M, Losada IJ (2002) Turbulence in swash and surf zones: a review. Coast Eng 45(3–4):129

    Google Scholar 

  43. 43.

    Lubin P, Chanson H (2017) Are breaking waves, bores, surges and jumps the same flow? Environ Fluid Mech 17(1):47–77

    Google Scholar 

  44. 44.

    Makris CV, Memos CD, Krestenitis YN (2016) Numerical modeling of surf zone dynamics under weakly plunging breakers with SPH method. Ocean Modell 98:12–35

    Google Scholar 

  45. 45.

    Manenti S, Pierobon E, Gallati M, Sibilla S, D’Alpaos L, Macchi EG, Todeschini S (2016) Vajont disaster: smoothed particle hydrodynamics modeling of the post-event 2D experiments. J Hydraul Eng 142(05015007):1–11

    Google Scholar 

  46. 46.

    Meringolo DD, Colagrossi A, Marrone S, Aristodemo F (2017) On the filtering of acoustic components in weakly-compressible SPH simulations. J Fluids Struct 70:1–23

    Google Scholar 

  47. 47.

    Misra SK, Kirby JT, Brocchini M, Veron F, Thomas M, Kambhamettu C (2008) The mean and turbulent flow structure of a weak hydraulic jump. Phys Fluids 20:03510

    Google Scholar 

  48. 48.

    Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574

    Google Scholar 

  49. 49.

    Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406

    Google Scholar 

  50. 50.

    Nadaoka K, Hino M, Koyano Y (1989) Structure of the turbulent flow field under breaking waves in the surf zone. J Fluid Mech 204:359–387

    Google Scholar 

  51. 51.

    Peregrine DH (1983) Breaking waves on beaches. Annu Rev Fluid Mech 15:149–178

    Google Scholar 

  52. 52.

    Peregrine DH, Svendsen IA (1978) Spilling breakers, bores and hydraulic jumps. In: Proceedings of the 16th international conference on coastal engineering. ICCE. Hamburg. ASCE, pp 540–550

  53. 53.

    Pugliese Carratelli E, Viccione G, Bovolin V (2016) Free surface flow impact on a vertical wall: a numerical assessment. Theor Comput Fluid Dyn 30(5):403–414

    Google Scholar 

  54. 54.

    Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139(1–4):375–408

    Google Scholar 

  55. 55.

    Sarfaraz M, Pak A (2017) SPH numerical simulation of tsunami wave forces impinged on bridge superstructures. Coast Eng 121:145–157

    Google Scholar 

  56. 56.

    Shadloo MS, Weiss R, Yildiz M, Dalrymple RA (2015) Numerical simulation of long wave runup for breaking and nonbreaking waves. Int J Offshore Polar Eng 25(1):1–7

    Google Scholar 

  57. 57.

    Sibilla S (2015) An algorithm to improve consistency in Smoothed Particle Hydrodynamics. Comput Fluids 118:148–158

    Google Scholar 

  58. 58.

    Stansby PK, Feng T (2005) Kinematics and depth-integrated terms in surf zone waves from laboratory measurement. J Fluid Mech 529:279–310

    Google Scholar 

  59. 59.

    Stive MJF (1980) Velocity and pressure field of spilling breakers. In: Proceeding of the 17th international conference on coastal engineering, Sydney, ASCE, New York, pp 547–566

  60. 60.

    Ting FCK, King JT (1995) Dynamics of surf-zone turbulence in a strong plunging breaker. Coast Eng 24:177–204

    Google Scholar 

  61. 61.

    Viccione G, Bovolin V, Carratelli EP (2008) 2008 Defining and optimizing algorithms for neighbouring particle identification in SPH fluid simulations. Int J Numer Meth Fluids 58(6):625–638

    Google Scholar 

  62. 62.

    Vila JP (1999) On particle weighted methods and smooth particle hydrodynamics. Math Models Methods Appl Sci 9(2):161–209

    Google Scholar 

  63. 63.

    Violeau D (2012) Fluid mechanics and the SPH method: theory and applications. Oxford University Press, Oxford

    Google Scholar 

  64. 64.

    Violeau D, Issa R (2007) Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. Int J Numer Methods Fluids 53:277–304

    Google Scholar 

  65. 65.

    Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396

    Google Scholar 

  66. 66.

    Zhao Q, Armfield S, Tanimoto K (2004) Numerical simulation of breaking waves by a multi-scale turbulence model. Coast Eng 51:53–80

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diana De Padova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Padova, D., Ben Meftah, M., De Serio, F. et al. Characteristics of breaking vorticity in spilling and plunging waves investigated numerically by SPH. Environ Fluid Mech 20, 233–260 (2020). https://doi.org/10.1007/s10652-019-09699-5

Download citation

Keywords

  • Smoothed particle hydrodynamics models
  • Spilling breaking
  • Plunging breaking
  • Velocity field
  • Vorticity