Skip to main content
Log in

Turbulent structures of buoyant jet in cross-flow studied through large-eddy simulation

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In the present paper we study buoyant (plume) and non-buoyant (jet) fluid injection in a neutrally stratified uniform cross-flow. Both cases are of practical importance in environmental fluid mechanics. The study is carried out numerically, using highly resolved large-eddy simulation in conjunction with the Lagrangian dynamic sub-grid scale model for both momentum and scalar transport equations. The velocity ratio is \(\kappa =8\). In the plume case, the Froude number is \(F=10\), such to allow the use of the Boussinesq approximation. The simulations are successfully validated against experimental data and well established semi-empirical relations. The study shows the existence of three different regions as regards the plume evolution, each of them characterised by different peculiarities: in momentum-buoyancy region the plume exhibits an almost steady cylindrical shape with relative small turbulence structures; in deflection region the plume is deviated horizontally and a high shear rate is detected; in entrainment region the vortex pair develops, along with the sausage-like turbulent structure. The comparison between the plume and the jet case shows that the latter has a higher eccentricity while its trajectory height is sensibly lower. Also, the sausage-like structures are not present. Finally, an empirical formula for the jet trajectory is given, although its full validation will require additional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

\({\textsc {s}}_{ik}\) :

Fluctuation strain rate tensor

\(B_{j0}\) :

Initial buoyancy flux

\(c_s\) :

Smagorinsky constant for momentum

D :

Diameter of cylindrical nozzle

\(E_{\psi \psi }\) :

Time power spectra of \(\psi \)

g :

Gravity acceleration magnitude

\(k_n\) :

Mass coefficient

p :

Dynamic pressure

Q :

Second invariant of velocity gradient tensor

\(Q_{j0}\) :

Initial volume flux

\(s_j\) :

Plume active scalar (salinity)

\(S_{ik}\) :

Strain rate tensor

u :

Velocity magnitude

\(z^*\) :

Height where entrainment starts

\(z_B\) :

Height of buoyancy influence

\(z_M\) :

Height of momentum influence

\(\alpha _s\) :

Molecular salinity diffusivity

\(\beta \) :

Calibration parameter

\(\beta _s\) :

Volumetric contraction coefficient of salinity

\(\varDelta \) :

Filter/grid width

\(\delta _{ik}\) :

Kronecker delta

\(\epsilon \) :

Dissipation rate of TKE

\(\eta \) :

Kolmogorov length scale

\(\nu \) :

Molecular kinematic viscosity

\(\rho \) :

Space-time variable density

\(\tau _{ik}\) :

SGS stress tensor

\(\kappa \) :

Velocity ratio

\(\textit{F}\) :

Froude number

\(\textit{Re}\) :

Reynolds number

\(\textit{Sc}\) :

Schmidt number

\(\langle \psi \rangle \) :

Time averaged quantity

\(\overline{\psi }\) :

Grid space filter

\(\psi \) :

Generic variable

\(\psi '\) :

Variation from mean value

\(\psi _{0}\) :

Reference value

\(\psi _{{\textsc {sgs}}}\) :

Sub-grid scale quantity

\(\psi _{cf}\) :

Uniform cross-flow value

\(\psi _{j0}\) :

Initial plume value

\(\psi _{j}\) :

Plume related quantity

\(\widehat{\psi } \) :

Test space filter

References

  1. Armenio V, Sarkar S (2002) An investigation of stably stratified turbulent channel flow using large-eddy simulation. J Fluid Mech 459:1

    Article  Google Scholar 

  2. Armenio V (2005) Mathematical modeling of stratified flows. In: V. Armenio and S. Sarkar (eds) Environmental stratified flows, vol 479. CISM International Centre for Mechanical Sciences (Courses and Lectures). https://doi.org/10.1007/3-211-38078-7_1

  3. Camussi R, Guj G, Stella A (2002) Experimental study of a jet in a crossflow at very low reynolds number. J Fluid Mech 454:113144

    Article  Google Scholar 

  4. Cavar D, Meyer KE (2012) Les of turbulent jet in cross-flow: part 1 a numerical validation study. Int J Heat and Fluid Flow 36((Supplement C)):18–34. https://doi.org/10.1016/j.ijheatfluidflow.2011.12.009

    Article  Google Scholar 

  5. Chu VH, Goldberg MB (1974) Buoyant forced-plumes in cross flow. J Hydraul Div 100:1203–1214

    Google Scholar 

  6. Cintolesi C, Petronio A, Armenio V (2015) Large eddy simulation of turbulent buoyant flow in a confined cavity with conjugate heat transfer. Phys Fluids 27:095109. https://doi.org/10.1063/1.4930815

    Article  Google Scholar 

  7. Cintolesi C, Petronio A, Armenio V (2016) Large-eddy simulation of thin film evaporation and condensation from a hot plate in enclosure: first order statistics. Int J Heat Mass Transf 101:1123. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.006

    Article  Google Scholar 

  8. Cintolesi C, Petronio A, Armenio V (2017) Large-eddy simulation of thin film evaporation and condensation from a hot plate in enclosure: second order statistics. Int J Heat Mass Transf 115:410–423. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.043

    Article  Google Scholar 

  9. Cunningham P, Goodrick S, Hussaini YM, Linn R (2004) Coherent vortical structures in numerical simulations of buoyant plumes from wildland fires. Int J Wildland Fire 14:61–75. https://doi.org/10.1071/WF04044

    Article  Google Scholar 

  10. de Wit L, van Rhee C (2014) Testing an improved artificial viscosity advection scheme to minimise wiggles in large eddy simulation of buoyant jet in crossflow. Flow Turbul Combust 92:699–730

    Article  Google Scholar 

  11. de Wit L, van Rhee C, Keetels G (2014) Turbulent interaction of a buoyant jet in cross-flow. J Hydraul Eng 140:04014060

    Article  Google Scholar 

  12. Denev JA, Fröhlich J, Bockhorn H (2009) Large eddy simulation of a swirling transverse jet into a crossflow with investigation of scalar transport. Phys Fluids 21:015101. https://doi.org/10.1063/1.3054148

    Article  Google Scholar 

  13. Devenish BJ, Rooney GG, Webster HN, Thomson DJ (2010) The entrainment rate for buoyant plumes in a crossflow. Bound-Layer Meteorol 134:411–439

    Article  Google Scholar 

  14. Dimotakis PE (2000) Mixing transition in turbulent flows. J Fluid Mech 409:69–98

    Article  Google Scholar 

  15. Dubief Y, Delcayre F (2000) On coherent-vortex identification in turbulence. J Turbul 1:11. https://doi.org/10.1088/1468-5248/1/1/011

    Article  Google Scholar 

  16. Fan L-N (1967) Turbulent buoyant jets into stratified or flowing ambient fluids. Ph.D. thesis, California Institute of Technology

  17. Fischer H, List J, Koh C, Imberger J, Brooks N (1979) Mixing in inland and coastal waters. Academic Press, New York

    Google Scholar 

  18. Fric TF, Roshko A (1994) Vortical structure in the wake of a transverse jet. J Fluid Mech 279:147. https://doi.org/10.1017/S0022112094003800

    Article  Google Scholar 

  19. Fröhlich J, Mellen CP, Rodi W, Temmerman L, Leschziner MA (2005) Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J Fluid Mech 526:1966. https://doi.org/10.1017/S0022112004002812

    Article  Google Scholar 

  20. Fröhlich J, Denev JA, Bockhorn H (2004) Large eddy simulation of of a jet in crossflow. ECCOMAS, 24–28 July

  21. Gaskin SJ (1995) Single buoyant jets in a crossflow and the advected line thermal. Ph.D. thesis, University of Canterbury, Christchurch, New Zealand

  22. Germano M, Piomelli U, Moin P, Cabot W (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760

    Article  Google Scholar 

  23. Gray DD, Giorgini A (1976) The validity of the boussinesq approximation for liquids and gases. Int J Heat Mass Transf 19:545–551. https://doi.org/10.1016/0017-9310(76)90168-X

    Article  Google Scholar 

  24. Hasselbrink EF, Mungal MG (2001) Transverse jets and jet flames. part 1. scaling laws for strong transverse jets. J Fluid Mech 443:125. https://doi.org/10.1017/S0022112001005146

    Google Scholar 

  25. Huq P, Stewart EJ (1996) A laboratory study of buoyant plumes in laminar and turbulent crossflows. Atmos Environ 30(7):1125–1135. https://doi.org/10.1016/1352-2310(95)00335-5

    Article  Google Scholar 

  26. Jasak H, Weller HG, Gosman AD (1999) High resolution nvd differencing scheme for arbitrarily unstructured meshes. Int J Numer Methods Fluids 31:431–449

    Article  Google Scholar 

  27. Keramarisa E, Pechlivanidis G (2016) The behaviour of a turbulent buoyant jet into flowing environment. In: International conference on efficient and sustainable water systems management toward worth living development, 2nd EWaS 2016, vol 162, pp 120–127

  28. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 2:263–289

    Google Scholar 

  29. Lavelle JW (1997) Buoyancy-driven plumes in rotating, stratified cross flows: plume dependence on rotation, turbulent mixing, and crossflow strength. J Geophys Res Oceans 102(C2):3405–3420. https://doi.org/10.1029/96JC03601

    Article  Google Scholar 

  30. Hun-Wei Lee J, Chu V (2003) Turbulent jets and plumes. Springer–Kluwer Academic Publisher, Berlin

    Google Scholar 

  31. Ma F, Satish M, Islam MR (2007) Large eddy simulation of thermal jets in cross flow. Eng Appl Comput Fluid Mech 1(1):25–35. https://doi.org/10.1080/19942060.2007.11015179

    Google Scholar 

  32. Mahesh K (2013) The interaction of jets with crossflow. Ann Rev Fluid Mech 45(1):379–407. https://doi.org/10.1146/annurev-fluid-120710-101115

    Article  Google Scholar 

  33. Meftah MB, Davies P, Malcangio D, Mossa M (2004) Turbulence of vertical round buoyant jets in a crossflow. Proc River Flow 2:1167–1174

    Google Scholar 

  34. Meneveau C, Lund TS, Cabot WH (1996) A lagrangian dynamic subgrid-scale model of turbulence. J Fluid Mech 316:353

    Article  Google Scholar 

  35. Moussa ZM, Trischka JW, Eskinazi S (1977) The near-field in the mixing of a round jet with a cross-stream. J Fluid Mech 80:49–80

    Article  Google Scholar 

  36. Oliveira PJ, Issa PI (2001) An improved piso algorithm for the computation of bouyancy driven flows. Numer Heat Transf Part B Fundam 640:473

    Google Scholar 

  37. Piomelli U (2001) Large-eddy and direct simulation of turbulent flows. In: CFD2001—9th Conférence Annuelle de la Société Canadienne de CFD

  38. Pope SB (2000) Turbulent Flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  39. Sagaut P (2000) Large eddy simulation for incompressible flows. An introduction. Springer, Berlin

    Google Scholar 

  40. Smith SH, Mungal MG (1998) Mixing, structure and scaling of the jet in cross-flow. J Fluid Mech 357:83–122

    Article  Google Scholar 

  41. van Leer B (1979) Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov’s method. J Computat Phys 32(1):101–136. https://doi.org/10.1016/0021-9991(79)90145-1

    Article  Google Scholar 

  42. Wright SJ (1977) Mean behavior of buoyant jets in a crossflow. J Hydraul Div 103:499–513

    Google Scholar 

  43. Wright SJ (1984) Buoyant jets in density-stratified crossflow. J Hydraul Eng 110(5):643–656

    Article  Google Scholar 

  44. Yuan LL, Street RL (1998) Trajectory and entrainment of a round jet in crossflow. Phy Fluids 10(9):2323–2335. https://doi.org/10.1063/1.869751

    Article  Google Scholar 

  45. Yuan LL, Street RL, Ferziger JH (1999) Large-eddy simulations of a round jet in crossflow. J Fluid Mech 379:71104. https://doi.org/10.1017/S0022112098003346

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Regione Friuli-Venezia Giulia - DITENAVE - Progetto “CFD open source per opera morta - COSMO” n. CUP J94C14000090006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Cintolesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cintolesi, C., Petronio, A. & Armenio, V. Turbulent structures of buoyant jet in cross-flow studied through large-eddy simulation. Environ Fluid Mech 19, 401–433 (2019). https://doi.org/10.1007/s10652-018-9629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-018-9629-1

Keywords

Navigation