Environmental Fluid Mechanics

, Volume 17, Issue 2, pp 211–229 | Cite as

Numerical modeling of simultaneous tracer release and piscicide treatment for invasive species control in the Chicago Sanitary and Ship Canal, Chicago, Illinois

  • Zhenduo Zhu
  • Davide Motta
  • P. Ryan Jackson
  • Marcelo H. Garcia
Original Article


In December 2009, during a piscicide treatment targeting the invasive Asian carp in the Chicago Sanitary and Ship Canal, Rhodamine WT dye was released to track and document the transport and dispersion of the piscicide. In this study, two modeling approaches are presented to reproduce the advection and dispersion of the dye tracer (and piscicide), a one-dimensional analytical solution and a three-dimensional numerical model. The two approaches were compared with field measurements of concentration and their applicability is discussed. Acoustic Doppler current profiler measurements were used to estimate the longitudinal dispersion coefficients at ten cross sections, which were taken as reference for calibrating the longitudinal dispersion coefficient in the one-dimensional analytical solution. While the analytical solution is fast, relatively simple, and can fairly accurately predict the core of the observed concentration time series at points downstream, it does not capture the tail of the breakthrough curves. These tails are well reproduced by the three-dimensional model, because it accounts for the effects of dead zones and a power plant which withdraws nearly 80 % of the water from the canal for cooling purposes before returning it back to the canal.


Numerical modeling Rhodamine Dye tracer Rotenone piscicide Breakthrough curve Chicago Sanitary and Ship Canal Asian carp 



The support of the Chester and Helen Siess Professorship and the M.T. Geoffrey Yeh Chair in the Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, is greatly acknowledged. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.


  1. 1.
    Pointwise. Accessed 25 Mar 2015
  2. 2.
    Carr M, Rehmann C, Stoeckel J, Padilla D, Schneider D (2004) Measurements and consequences of retention in a side embayment in a tidal river. J Mar Syst 49(1–4):41–53. doi: 10.1016/j.jmarsys.2003.05.004 CrossRefGoogle Scholar
  3. 3.
    Carr ML, Rehmann CR (2007) Measuring the dispersion coefficient with acoustic Doppler current profilers. J Hydraul Eng 133(8):977–982. doi: 10.1061/(ASCE)0733-9429(2007) CrossRefGoogle Scholar
  4. 4.
    Chan SN, Thoe W, Lee JHW (2013) Real-time forecasting of Hong Kong beach water quality by 3D deterministic model. Water Res 47(4):1631–1647. doi: 10.1016/j.watres.2012.12.026 CrossRefGoogle Scholar
  5. 5.
    Chao X, Jia Y, Wang SSY, Hossain AKM (2012) Numerical modeling of surface flow and transport phenomena with applications to Lake Pontchartrain. Lake Reserv Manag 28(1):31–45. doi: 10.1080/07438141.2011.639481 CrossRefGoogle Scholar
  6. 6.
    Choi KW, Lee JH (2007) Distributed entrainment sink approach for modeling mixing and transport in the intermediate field. J Hydraul Eng 133(7):804–815. doi: 10.1061/(ASCE)0733-9429 CrossRefGoogle Scholar
  7. 7.
    Deng ZQ, Singh VP, Bengtsson L (2001) Longitudinal dispersion coefficient in straight rivers. J Hydraul Eng 127(11):919–927. doi: 10.1061/(ASCE)0733-9429(2001) CrossRefGoogle Scholar
  8. 8.
    Elder JW (1959) The dispersion of marked fluid in turbulent shear flow. J Fluid Mech 5(04):544–560. doi: 10.1017/S0022112059000374 CrossRefGoogle Scholar
  9. 9.
    Finlayson BJ, Schnick RA, Cailteux RL, DeMong L, Horton WD, McClay W, Thompson C, Tichacek GJ (2000) Rotenone use in fisheries management: administrative and technical guidelines manual. American Fisheries Society, Bethesda, MDGoogle Scholar
  10. 10.
    Fischer H, List E, Koh R, Imberger J, Brooks N (1979) Mixing in Inland and coastal waters. Academic Press, Elsevier, New YorkGoogle Scholar
  11. 11.
    Galperin B, Kantha L, Hassid S, Rosati A (1988) A quasi-equilibrium turbulent energy model for geophysical flows. J Atmos Sci 45:55–62CrossRefGoogle Scholar
  12. 12.
    Garcia T, Jackson PR, Murphy EA, Valocchi AJ, Garcia MH (2013) Development of a Fluvial Egg Drift Simulator to evaluate the transport and dispersion of Asian carp eggs in rivers. Ecol Model 263:211–222. doi: 10.1016/j.ecolmodel.2013.05.005 CrossRefGoogle Scholar
  13. 13.
    Garcia T, Murphy EA, Jackson PR, Garcia MH (2015) Application of the FluEgg model to predict transport of Asian carp eggs in the Saint Joseph River ( Great Lakes tributary ). J GT Lakes Res 41:374–386. doi: 10.1016/j.jglr.2015.02.003 CrossRefGoogle Scholar
  14. 14.
    Hamrick J (1992) A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects. Technical Report 317 in Applied Marine Science and Ocean Engineering, Virginia Institute of Marine Science, School of Marine Science, The College of William and Mary, Gloucester Point, VA 23062Google Scholar
  15. 15.
    Jackson PR, Lageman JD (2014) Real-time piscicide tracking using Rhodamine WT dye for support of application, transport, and deactivation strategies in riverine environments. U.S. Geological Survey Scientific Investigations Report 2013-5211. doi: 10.3133/sir20135211
  16. 16.
    James SC, Roberts JD, Shrestha PL (2014) Simulating flow changes due to current energy capture: SNL-EFDC model verification. World Environ Water Resour Congr 2014:816–825. doi: 10.1061/9780784413548.085 Google Scholar
  17. 17.
    Kolar CS, Chapman DC, Courtenay W, Housel C, Williams J, Jennings D (2007) Bigheaded carps: a biological synopsis and environmental risk assessment. American Fisheries Society, Bethesda, MDGoogle Scholar
  18. 18.
    Lanyon R (2012) Building the Canal to Save Chicago. Xlibris, CorpGoogle Scholar
  19. 19.
    Manache G, Melching CS, Lanyon R (2007) Calibration of a continuous simulation fecal coliform model based on historical data analysis. J Environ Eng 133(7):681–691. doi: 10.1061/(ASCE)0733-9372(2007)133:7(681 CrossRefGoogle Scholar
  20. 20.
    Martin JE, Carr ML, García MH (2012) Handbook of environmental fluid dynamics: systems, pollution, modeling, and measurements, vol 2, chap. 16. Riverine Transport, Mixing, and Dispersion, CRC Press, Boca Raton, pp 215–228Google Scholar
  21. 21.
    Melching CS, Ao Y, Alp E (2013) Modeling evaluation of integrated strategies to meet proposed dissolved oxygen standards for the Chicago waterway system. J Environ Manag 116:145–155. doi: 10.1016/j.jenvman.2012.11.040 CrossRefGoogle Scholar
  22. 22.
    Melching CS, Liang J, Fleer L, Wethington D (2014) Modeling the water quality impacts of the separation of the Great Lakes and Mississippi River basins for invasive species control. J GT Lakes Res 41:87–98. doi: 10.1016/j.jglr.2014.11.009 CrossRefGoogle Scholar
  23. 23.
    Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20(4):851–875. doi: 10.1029/RG020i004p00851 CrossRefGoogle Scholar
  24. 24.
    Morales VM, Mier JM, Garcia MH (2015) Innovative modeling framework for combined sewer overflows prediction. Urban Water J. doi: 10.1080/1573062X.2015.1057183
  25. 25.
    Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900. doi: 10.13031/2013.23153 CrossRefGoogle Scholar
  26. 26.
    Motta D, Abad JD, García MH (2010) Modeling framework for organic sediment resuspension and oxygen demand: case of Bubbly Creek in Chicago. J Environ Eng 136(9):952–964. doi: 10.1061/(ASCE)EE.1943-7870.0000228 CrossRefGoogle Scholar
  27. 27.
    Runkel RL (1996) Solution of the advection-dispersion equation: continuous load of finite duration. J Environ Eng 122(9):830–832. doi: 10.1061/(ASCE)0733-9372(1996)122:9(830) CrossRefGoogle Scholar
  28. 28.
    Rutherford JC (1994) River mixing. Wiley, ChichesterGoogle Scholar
  29. 29.
    Shen C, Niu J, Anderson EJ, Phanikumar MS (2010) Estimating longitudinal dispersion in rivers using acoustic Doppler current profilers. Adv Water Resour 33(6):615–623. doi: 10.1016/j.advwatres.2010.02.008 CrossRefGoogle Scholar
  30. 30.
    Sinha S, Liu X, García MH (2012) Three-dimensional hydrodynamic modeling of the Chicago River, Illinois. Environ Fluid Mech 12(5):471–494. doi: 10.1007/s10652-012-9244-5 CrossRefGoogle Scholar
  31. 31.
    Sinha S, Liu X, García MH (2013) A three-dimensional water quality model of Chicago Area Waterway System (CAWS). Environ Model Assess 18(5):567–592. doi: 10.1007/s10666-013-9367-1 CrossRefGoogle Scholar
  32. 32.
    Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164CrossRefGoogle Scholar
  33. 33.
    U.S. Army Corps of Engineers (2014) The GLMRIS report: Great Lakes and Mississippi River Interbasin StudyGoogle Scholar
  34. 34.
    Waterman DM, Waratuke AR, Motta D, Cataño Lopera YA, Zhang H, García MH (2011) In situ characterization of resuspended-sediment oxygen demand in Bubbly Creek, Chicago, Illinois. J Environ Eng 137(8):717–730. doi: 10.1061/(ASCE)EE.1943-7870.0000382 CrossRefGoogle Scholar
  35. 35.
    Xia M, Xie L, Pietrafesa LJ, Whitney MM (2011) The ideal response of a Gulf of Mexico estuary plume to wind forcing: Its connection with salt flux and a Lagrangian view. J Geophys Res 116(8):1–14. doi: 10.1029/2010JC006689 Google Scholar
  36. 36.
    Xu H, Lin J, Wang D (2008) Numerical study on salinity stratification in the Pamlico River Estuary. Estuar, Coast Shelf Sci 80(1):74–84. doi: 10.1016/j.ecss.2008.07.014 CrossRefGoogle Scholar
  37. 37.
    Zhu Z, Oberg N, Morales VM, Quijano JC, Landry BJ, Garcia MH (2016) Integrated urban hydrologic and hydraulic modelling in Chicago, Illinois. Environ Model Softw 77:63–70. doi: 10.1016/j.envsoft.2015.11.014 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana and ChampaignUrbanaUSA
  2. 2.U.S. Geological SurveyIllinois Water Science CenterUrbanaUSA
  3. 3.Amec Foster Wheeler plcPhiladelphiaUSA

Personalised recommendations