Environmental Fluid Mechanics

, Volume 14, Issue 6, pp 1381–1403 | Cite as

Large-eddy simulation of turbulent flow and dispersion over a complex urban street canyon

  • Kiyoung Moon
  • Jeong-Min Hwang
  • Byung-Gu Kim
  • Changhoon Lee
  • Jung-il Choi
Original Article


Turbulent flow and dispersion characteristics over a complex urban street canyon are investigated by large-eddy simulation using a modified version of the Fire Dynamics Simulator. Two kinds of subgrid scale (SGS) models, the constant coefficient Smagorinsky model and the Vreman model, are assessed. Turbulent statistics, particularly turbulent stresses and wake patterns, are compared between the two SGS models for three different wind directions. We found that while the role of the SGS model is small on average, the local or instantaneous contribution to total stress near the surface or edge of the buildings is not negligible. By yielding a smaller eddy viscosity near solid surfaces, the Vreman model appears to be more appropriate for the simulation of a flow in a complex urban street canyon. Depending on wind direction, wind fields, turbulence statistics, and dispersion patterns show very different characteristics. Particularly, tall buildings near the street canyon predominantly generate turbulence, leading to homogenization of the mean flow inside the street canyon. Furthermore, the release position of pollutants sensitively determines subsequent dispersion characteristics.


Large-eddy simulation Urban street canyon Pollutant dispersion  Tall building Subgrid scale model Turbulent flow 



This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (R31-2008-000-10049-0, 20090093134, EDISON project: 2011-0029561) and Agency for Defense Development.


  1. 1.
    Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126(564):941–990CrossRefGoogle Scholar
  2. 2.
    Hanna S, Britter R (2002) Wind flow and vapor cloud dispersion at industrial and urban sites. Wiley, New YorkCrossRefGoogle Scholar
  3. 3.
    Batchvarova E, Gryning SE (2005) Progress in urban dispersion studies. Theor Appl Climatol 84:57–67CrossRefGoogle Scholar
  4. 4.
    Collier CG (2006) The impact of urban areas on weather. Q J R Meteorol Soc 132:1–25CrossRefGoogle Scholar
  5. 5.
    Souch C, Grimmond S (2006) Applied climatology: urban climate. Prog Phys Geogr 30:270–279CrossRefGoogle Scholar
  6. 6.
    Fernando H, Lee S, Anderson J, Princevac M, Pardyjak E, Grossman-Clarke S (2001) Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ Fluid Mech 1:107–164CrossRefGoogle Scholar
  7. 7.
    Cimorelli A, Perry S, Venkatram A, Weil J (1998) AERMOD: description of model formulation. US EPAGoogle Scholar
  8. 8.
    Scire J, Strimaitis D, Yamartino R (2000) A user’s guide for the CALPUFF dispersion model. Earth Tech, ConcordGoogle Scholar
  9. 9.
    Kim BG, Lee C, Joo S, Ryu KC, Kim S, You D, Shim WS (2011) Estimation of roughness parameters within sparse urban-like obstacle arrays. Bound-Layer Meteorol 139(3):457–485CrossRefGoogle Scholar
  10. 10.
    Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Ann Rev Fluid Mech 35:469–496CrossRefGoogle Scholar
  11. 11.
    Dobre A, Arnold S, Smalley R, Boddy J, Barlow J, Tomlin A, Belcher S (2005) Flow field measurements in the proximity of an urban intersection in London, UK. Atmos Environ 39:4647–4657CrossRefGoogle Scholar
  12. 12.
    Balogun Aa, Tomlin AS, Wood CR, Barlow JF, Belcher SE, Smalley RJ, Lingard JJN, Arnold SJ, Dobre A, Robins AG, Martin D, Shallcross DE (2010) In-street wind direction variability in the vicinity of a busy intersection in central London. Bound-Layer Meteorol 136(3):489–513CrossRefGoogle Scholar
  13. 13.
    Inagaki A, Kanda M (2008) Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow. J Fluid Mech 615:101–120CrossRefGoogle Scholar
  14. 14.
    Kastner-Klein P, Plate E (1999) Wind-tunnel study of concentration fields in street canyons. Atmos Environ 33:3973–3979CrossRefGoogle Scholar
  15. 15.
    Khan IM, Simons RR, Grass AJ (2005) Upstream turbulence effect on pollution dispersion. Environ Fluid Mech 5:393–413CrossRefGoogle Scholar
  16. 16.
    Tsang C, Kwok K, Hitchcock P (2012) Wind tunnel study of pedestrian level wind environment around tall buildings: effects of building dimensions, separation and podium. Build Environ 49:167–181CrossRefGoogle Scholar
  17. 17.
    Pearce W, Baker C (1999) Wind tunnel tests on the dispersion of vehicular pollutants in an urban area. J Wind Eng Ind Aerodyn 80:327–349CrossRefGoogle Scholar
  18. 18.
    Carpentieri M, Robins AG, Baldi S (2009) Three-dimensional mapping of air flow at an urban canyon intersection. Bound-Layer Meteorol 133:277–296CrossRefGoogle Scholar
  19. 19.
    Li XX, Liu CH, Leung DY, Lam K (2006) Recent progress in CFD modeling of wind field and pollutant transport in street canyons. Atmos Environ 40:5640–5658CrossRefGoogle Scholar
  20. 20.
    Assimakopoulos V (2003) A numerical study of atmospheric pollutant dispersion in different two-dimensional street canyon configurations. Atmos Environ 37:4037–4049CrossRefGoogle Scholar
  21. 21.
    Baik JJ, Kang YS, Kim JJ (2007) Modeling reactive pollutant dispersion in an urban street canyon. Atmos Environ 41:934–949CrossRefGoogle Scholar
  22. 22.
    Huang Y, Hu X, Zeng N (2009) Impact of wedge-shaped roofs on airflow and pollutant dispersion inside urban street canyons. Build Environ 44:2335–2347CrossRefGoogle Scholar
  23. 23.
    Lateb M, Masson C, Stathopoulos T, Bedard C (2010) Numerical simulation of pollutant dispersion around a building complex. Build Environ 45:1788–1798CrossRefGoogle Scholar
  24. 24.
    Hang J, Li Y, Sandberg M, Buccolieri R, Sabatino SD (2012) The influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areas. Build Environ 56:346–360CrossRefGoogle Scholar
  25. 25.
    Wang X, McNamara K (2006) Evaluation of CFD simulation using RANS turbulence models for building effects on pollutant dispersion. Environ Fluid Mech 6:181–202CrossRefGoogle Scholar
  26. 26.
    Gartmann A, Muller M, Parlow E, Vogt R (2012) Evaluation of numerical simulations of \({CO_2}\) transport in a city block with field measurements. Environ Fluid Mech 12:185–200CrossRefGoogle Scholar
  27. 27.
    Koutsourakis N, Bartzis J, Markatos N (2012) Evaluation of reynolds stress, \({k-\epsilon }\) and RNG \({k-\epsilon }\) turbulence models in street canyon flows using various experimental datasets. Environ Fluid Mech 12:379–403CrossRefGoogle Scholar
  28. 28.
    Gousseau P, Blocken B, Stathopoulos T, van Heijst G (2011) CFD simulation of near-field pollutant dispersion on a high-resolution grid: a case study by LES and RANS for a building group in downtown Montreal. Atmos Environ 45(2):428–438CrossRefGoogle Scholar
  29. 29.
    Tominaga Y, Stathopoulos T (2010) Numerical simulation of dispersion around an isolated cubic building: model evaluation of RANS and LES. Build Environ 45:2231–2239CrossRefGoogle Scholar
  30. 30.
    Tominaga Y, Stathopoulos T (2011) CFD modeling of pollution dispersion in a street canyon: comparison between LES and RANS. J Wind Eng Ind Aerodyn 99(4):340–348CrossRefGoogle Scholar
  31. 31.
    Salim SM, Cheah SC, Chan A (2011) Numerical simulation of dispersion in urban street canyons with avenue-like tree plantings: comparison between RANS and LES. Build Environ 46:1735–1746CrossRefGoogle Scholar
  32. 32.
    Hanna S, Tehranian S, Carissimo B, Macdonald R, Lohner R (2002) Comparisons of model simulations with observations of mean flow and turbulence within simple obstacle arrays. Atmos Environ 36:5067–5079CrossRefGoogle Scholar
  33. 33.
    Baker J, Walker HL, Cai X (2004) A study of the dispersion and transport of reactive pollutants in and above street canyons-a large eddy simulation. Atmos Environ 38:6883–6892CrossRefGoogle Scholar
  34. 34.
    Kanda M, Moriwaki R, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Bound-Layer Meteorol 112(2):343–368CrossRefGoogle Scholar
  35. 35.
    Xie Z, Castro IP (2006) LES and RANS for turbulent flow over arrays of wall-mounted obstacles. Flow Turbul Combust 76:291–312CrossRefGoogle Scholar
  36. 36.
    Letzel MO, Krane M, Raasch S (2008) High resolution urban large-eddy simulation studies from street canyon to neighborhood scale. Atmos Environ 42:8770–8784CrossRefGoogle Scholar
  37. 37.
    Li XX, Liu CH, Leung DY (2009) Numerical investigation of pollutant transport characteristics inside deep urban street canyons. Atmos Environ 43:2410–2418CrossRefGoogle Scholar
  38. 38.
    Gu ZL, Zhang YW, Cheng Y, Lee SC (2011) Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons. Build Environ 46:2657–2665CrossRefGoogle Scholar
  39. 39.
    Coceal O, Thomas T, Castro I, Belcher S (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Bound-Layer Meteorol 121:491–519CrossRefGoogle Scholar
  40. 40.
    Hanna SR, Brown MJ, Camelli FE, Chan ST, Coirier WJ, Kim S, Hansen OR, Huber AH, Reynolds RM (2006) Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: an application of five computational fluid dynamics models. Bull Am Meteorol Soc 87:1713–1726CrossRefGoogle Scholar
  41. 41.
    Patnaik G, Boris JP, Young TR, Grinstein FF (2007) Large scale urban contaminant transport simulations with miles. J Fluids Eng 129(12):1524–1532CrossRefGoogle Scholar
  42. 42.
    Liu Y, Cui G, Wang Z, Zhang Z (2011) Large eddy simulation of wind field and pollutant dispersion in downtown Macao. Atmos Environ 45(17):2849–2859CrossRefGoogle Scholar
  43. 43.
    Smagorinsky J (1963) General circulation experiments with the primitive equations. Mon Weather Rev 91(3):99–164CrossRefGoogle Scholar
  44. 44.
    Vreman AW (2004) An eddy-viscosity subgrid-scale model for turbulent shear flow: algebraic theory and applications. Phys Fluids 16:3670–3681CrossRefGoogle Scholar
  45. 45.
    McGrattan K, Hostikka S, Floyd J, Baum H, Rehm R, Mell W, McDermott R (2010) Fire Dynamics Simulator (Version 5) Technical reference guide, vol 1: Mathematical model. NISTGoogle Scholar
  46. 46.
    Germano M, Piomelli U, Moin P, Cabot WH (1991) A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3:1760–1765CrossRefGoogle Scholar
  47. 47.
    Shah KB (1998) Large eddy simulations of flow past a cubic obstacle. Ph.D. thesis, Stanford University, StanfordGoogle Scholar
  48. 48.
    Werner H, Wengle H (1991) Large-eddy simulation of turbulent flow over and around a cube in a plate channel. In 8th Symposium on Turbulent Shear Flows. Technische University Munich, Munich, pp 155–168Google Scholar
  49. 49.
    Castro IP, Cheng H, Reynolds R (2006) Turbulence over urban-type roughness: deductions from wind-tunnel measurements. Bound-Layer Meteorol 118:109–131CrossRefGoogle Scholar
  50. 50.
    Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Bound-Layer Meteorol 22:79–90CrossRefGoogle Scholar
  51. 51.
    Finnigan J (2000) Turbulence in plant canopies. Ann Rev Fluid Mech 32:519–571CrossRefGoogle Scholar
  52. 52.
    Lawson T (1990) The determination of the wind environment of a building complex before construction. University of Bristol, Report number 9025Google Scholar
  53. 53.
    EPA (1995) User’s guide for the industrial source complex (ISC3) dispersion models. Report number EPA-454/B-95-003b, US Environmental Protection AgencyGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kiyoung Moon
    • 1
  • Jeong-Min Hwang
    • 2
  • Byung-Gu Kim
    • 2
  • Changhoon Lee
    • 1
    • 2
  • Jung-il Choi
    • 1
  1. 1.Department of Computational Science and EngineeringYonsei UniversitySeoul Republic of Korea
  2. 2.Department of Mechanical EngineeringYonsei UniversitySeoul Republic of Korea

Personalised recommendations