Environmental Fluid Mechanics

, Volume 15, Issue 2, pp 305–328 | Cite as

On the representation of urban heterogeneities in mesoscale models

  • Alberto Martilli
  • Jose Luis Santiago
  • Francisco Salamanca
Original Article


The size and arrangement of the obstacles and the presence of a source of heat (anthropogenic heat flux) are distinctive characteristics of an urban area. These two elements, together with the specific applications oriented to improve citizen’s comfort, determine the way urban heterogeneities are represented in mesoscale models. In this contribution two examples are presented. In the first a microscale fluid dynamics model is used to investigate the role of organized motions (dispersive fluxes) of a passive tracer emitted at the surface in a staggered and in an aligned array of cubes. The impact of the dispersive flux, that can reach 90 % of the total flux in the staggered array, is then assessed in a column model. The second example deals with the representation of anthropogenic heat fluxes and the estimation of thermal comfort by means of an urban canopy parameterization with a simple building energy model, implemented in a mesoscale model. The simulation of a typical summer day over the city of Madrid (Spain) shows that the anthropogenic heat fluxes have the largest impact on the air temperature in the evening-night, and that the presence of the city prolongs to the late evening the period of thermal discomfort, compared with the rural areas surrounding the city. The paper is concluded by pointing out that future work must be devoted to deep on the relationship between the real morphology of a city and the simplified morphology adopted in the urban canopy parameterizations.


Urban canopy parameterizations Mesoscale modelling  microscale modelling Thermal comfort Urban morphology 



Authors acknowledge Omduth Coceal for providing the DNS data for the validation of the RANS simulations. This study has been partially supported by the project “Modelización de la Influencia de la Vegetación Urbana en la Calidad del Aire y Confort Climático” (CGL2011-26173) funded by Spanish Ministry of Economy and Competitiveness and by the Project Supercomputation and E-Science (SyeC) from the Spanish CONSOLIDER Programme.


  1. 1.
    United Nations, Department of Economic and Social Affairs, Population Division (2006) World Urbanization Prospects: the 2005 Revision. Working Paper No. ESA/P/WP/200.Google Scholar
  2. 2.
    Masson V (2000) A physically-based scheme for the urban energy budget. Bound Layer Meteorol 94:357–397CrossRefGoogle Scholar
  3. 3.
    Kusaka H, Kondo H, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound Layer Meteorol 101:329–358CrossRefGoogle Scholar
  4. 4.
    Martilli A, Clappier A, Rotach MW (2002) An urban surface exchange parameterization for mesoscale models. Bound Layer Meteorol 104:261–304CrossRefGoogle Scholar
  5. 5.
    Coceal O, Belcher SE (2004) A canopy model of mean winds through urban areas. Q J R Meteorol Soc 130:1349–1372CrossRefGoogle Scholar
  6. 6.
    Best MJ (2005) Representing urban areas within operational numerical weather prediction models. Bound Layer Meteorol 114:91–109CrossRefGoogle Scholar
  7. 7.
    Dandou AM, Tombrou M, Soulakellis A, Bossioli E (2005) Development and evaluation of an urban parameterization scheme in the Penn State/NCAR Mesoscale model (MM5). J Geophys Res 110:D10102CrossRefGoogle Scholar
  8. 8.
    Kanda M, Kawai T, Kanega M, Moriwaki R, Narita K, Hagishima A (2005) A simple energy balance model for regular building arrays. Bound Layer Meteorol 116:423–443CrossRefGoogle Scholar
  9. 9.
    Kondo H, Genchi Y, Kikegawa Y, Ohashi Y, Yoshikado H, Komiyama H (2005) Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: structure of the urban canopy model and its basic performance. Bound Layer Meteorol 116:395–421CrossRefGoogle Scholar
  10. 10.
    Dupont S, Mestayer PG (2006) Parameterization of the urban energy budget with the Submesoscale Soil Model. J Appl Meteorol Climatol 45:1744–1765CrossRefGoogle Scholar
  11. 11.
    Hamdi R, Masson V (2008) Inclusion of a drag approach in the Town Energy Balance (TEB) scheme: offline 1D evaluation in a street canyon. J Appl Meteorol Climatol 47:2627–2644CrossRefGoogle Scholar
  12. 12.
    Lee SH, Park SU (2008) A vegetated urban canopy model for meteorological and environmental modelling. Bound Layer Meteorol 126:73–102CrossRefGoogle Scholar
  13. 13.
    Oleson KW, Bonan GB, Feddema J, Vertenstein M, Grimmond CSB (2008) An urban parameterization for a global climate model. Part I: formulation and evaluation for two cities. J Appl Meteorol Climatol 47:1038–1060CrossRefGoogle Scholar
  14. 14.
    Porson A, Clark PA, Harman IN, Best MJ, Belcher SE (2010) Implementation of a new urban energy budget scheme in the MetUM. Part I: description and idealized simulations. Q J R Meteorol Soc 136:1514–1529CrossRefGoogle Scholar
  15. 15.
    Aoyagi T, Seino N (2011) A square prism urban canopy scheme for the NHM and its evaluation on summer conditions in the Tokyo Metropolitan area, Japan. J Appl Meteorol Climatol 50:1476–1496CrossRefGoogle Scholar
  16. 16.
    Martilli A (2007) Current research and future challenges in urban mesoscale modelling. Int J Climatol 27:1909–1918CrossRefGoogle Scholar
  17. 17.
    Loridan T, Grimmond CSB, Grossman-Clarke S, Chen F, Tewari M, Manning K, Martilli A, Kusaka H, Best M (2010) Trade-offs and responsiveness of the single-layer urban canopy parametrization in WRF: an offline evaluation using the MOSCEM optimization algorithm and field observations. QJRMS 136:997–1019CrossRefGoogle Scholar
  18. 18.
    Schubert S, Grossman-Clarke S, Martilli A (2012) A double-canyon radiation scheme for multi-layer urban canopy models. Bound Layer Meteorol 145:439–468CrossRefGoogle Scholar
  19. 19.
    Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38:1262–1292CrossRefGoogle Scholar
  20. 20.
    Di Sabatino S, Leo LS, Cataldo R, Ratti R, Britter RE (2010) Construction of digital elevation models for a Southern European City and a comparative morphological analysis with respect to Northern European and North American Cities. J Appl Meteorol Climatol 49:1377–1396CrossRefGoogle Scholar
  21. 21.
    Kikegawa Y, Genchi Y, Yoshikado H, Kondo H (2003) Development of a numerical simulation system toward comprehensive assessments of urban warming countermeasures including their impacts upon the urban buildings energy-demands. Appl Energy 76:449–466CrossRefGoogle Scholar
  22. 22.
    Salamanca F, Krpo A, Martilli A, Clappier A (2010) A new building energy model coupled with an Urban Canopy Parameterization for urban climate simulations—Part I. Formulation, verification and sensitivity analysis of the model. Theor Appl Climatol 99:331–344CrossRefGoogle Scholar
  23. 23.
    Bueno B, Pigeon G, Norford L, Zibouche K, Marchadier C (2012) Development and evaluation of a building energy model integrated in the TEB scheme. Geosci Model Dev 5:433–448CrossRefGoogle Scholar
  24. 24.
    Martilli A (2009) On the derivation of input parameters for urban canopy models from urban morphological datasets. Bound Layer Meteorol 130:301–306CrossRefGoogle Scholar
  25. 25.
    Rasheed A, Robinson D, Clappier A, Narayanan C, Lakehal D (2011) Representing complexities in urban geometry in mesoscale modeling. Int J Climatol 31:289–301CrossRefGoogle Scholar
  26. 26.
    Leo LS, Buccolieri R, Di Sabatino S (2012) A novel approach for urban mean flow parameterisation. In: Proceedings of the 8th international conference on urban climates, UCD, Dublin Ireland, paper 374, 6th–10th August, 2012.Google Scholar
  27. 27.
    Santiago JL, Martilli A (2010) A dynamic urban canopy parameterization for mesoscale models based on CFD-RANS microscale simulations. Bound Layer Meteorol 137:417–439CrossRefGoogle Scholar
  28. 28.
    Krpo A, Salamanca F, Martilli A, Clappier A (2010) On the impact of anthropogenic heat fluxes on the urban boundary layer: a 2D numerical study. Bound Layer Meteorol 136:105–127CrossRefGoogle Scholar
  29. 29.
    Salamanca A, Martilli A, Yague C (2012) A numerical study of the urban boundary layer over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies of the UHI. Int J Climatol 32:2372–2386CrossRefGoogle Scholar
  30. 30.
    Martilli A, Santiago JL (2007) CFD simulation of airflow over a regular array of cubes. Part II: analysis of spatial average properties. Bound Layer Meteorol 122:635–654CrossRefGoogle Scholar
  31. 31.
    Coceal O, Thomas TG, Castro IP, Belcher SE (2006) Mean flow and turbulence statistics over groups of urban-like cubical obstacles. Bound Layer Meteorol 121:491–519CrossRefGoogle Scholar
  32. 32.
    Dupont S, Otte T, Ching J (2004) Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model (MM5). Bound Layer Meteorol 113:111–158CrossRefGoogle Scholar
  33. 33.
    Heiple S, Sailor DJ (2008) Using building energy simulation and geospatial modelling techniques to determine high resolution building sector energy consumption profiles. Energy Build 40:1426–1436CrossRefGoogle Scholar
  34. 34.
    Salamanca F, Martilli A (2010) A new building energy model coupled with an Urban Canopy Parameterization for urban climate simulations—Part II. Validation with one dimension off-line simulations. Theor Appl Climatol 99:345–356CrossRefGoogle Scholar
  35. 35.
    Salamanca F, Martilli A, Tewari M, Chen F (2010) A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF (The case of Houston). J Appl Meteorol Climatol 50:1107–1128CrossRefGoogle Scholar
  36. 36.
    Belding HS, Hatch TF (1955) An index for evaluating heat stress in terms of resulting physiological strain. Heat Pip Air Cond 27(8):129Google Scholar
  37. 37.
    Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London, p 435Google Scholar
  38. 38.
    Fernández García F (2009) Ciudad y cambio climático: as-pectos generales y aplicación al área metropolitana de Ma-drid. (in Spanish). Investigaciones Geográficas 49:173–195Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alberto Martilli
    • 1
  • Jose Luis Santiago
    • 1
  • Francisco Salamanca
    • 2
  1. 1.Atmospheric Pollution Modelling Unit, Environmental InstituteCiematMadridSpain
  2. 2.School of Mathematical and Statistical Sciences, Global Institute of SustainabilityASUTempeUSA

Personalised recommendations