Environmental Fluid Mechanics

, Volume 14, Issue 3, pp 591–616 | Cite as

Sediment processes and flow reversal in the undular tidal bore of the Garonne River (France)

  • David Reungoat
  • Hubert Chanson
  • Bastien Caplain
Original Article


A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising, and the bore front corresponds to the leading edge of the tidal wave in a funnel shaped estuarine zone with macro-tidal conditions. Some field observations were conducted in the tidal bore of the Garonne River on 7 June 2012 in the Arcins channel, a few weeks after a major flood. The tidal bore was a flat undular bore with a Froude number close to unity: \(\hbox {Fr}_{1} = 1.02\) and 1.19 (morning and afternoon respectively). A key feature of the study was the simultaneous recording of the water elevation, instantaneous velocity components and suspended sediment concentration (SSC) estimates, together with a detailed characterisation of the sediment bed materials. The sediment was some silty material (\(\hbox {d}_{50} \approx 13~\upmu \hbox {m}\)) which exhibited some non-Newtonion thixotropic behaviour. The velocity and SSC estimate were recorded simultaneously at high frequency, enabling a quantitative estimate of the suspended sediment flux at the end of the ebb tide and during the early flood tide. The net sediment flux per unit area was directed upstream after the bore, and its magnitude was much larger than that at end of ebb tide. The field observations highlighted a number of unusual features on the morning of 7 June 2012. These included (a) a slight rise in water elevation starting about 70 s prior to the front, (b) a delayed flow reversal about 50 s after the bore front, (c) some large fluctuations in suspended sediment concentration (SSC) about 100 s after the bore front and (d) a transient water elevation lowering about 10 min after the bore front passage. The measurements of water temperature and salinity showed nearly identical results before and after the tidal bore, with no evidence of saline and thermal front during the study.


Undular tidal bore Garonne River Suspended sediment processes  Flow reversal Field measurements Sediment bed properties. 



The authors thank all the people who participated to the field works, without whom the study could not have been conducted. The authors acknowledge the assistance of Patrice Benghiati and the permission to access and use the pontoon in the Bras d’Arcins. The ADV was provided kindly by Prof Laurent David (University of Poitiers, France). The financial assistance of the Agence Nationale de la Recherche (Projet MASCARET 10-BLAN-0911-01) is acknowledged, as well as the generous support of the project leader Dr Pierre Lubin (University of Bordeaux, France).


  1. 1.
    Bazin H (1865) Recherches expérimentales sur la propagation des Ondes. Mémoires présentés par divers savants à l’Académie des Sciences, vol 19, Paris, France, pp 495–644 (in French)Google Scholar
  2. 2.
    Brown R, Chanson H (2012) Suspended sediment properties and suspended sediment flux estimates in an urban environment during a major flood event. Water Resour Res 18:W11523. doi: 10.1029/2012WR012381 Google Scholar
  3. 3.
    Chanson H (2004) The hydraulics of open channel flow: an introduction, 2nd edn. Butterworth-Heinemann, Oxford ISBN 978 0 7506 5978 9Google Scholar
  4. 4.
    Chanson H (2010) Unsteady turbulence in tidal bores: effects of bed roughness. J Waterw Port Coast Ocean Eng 136(5):247–256. doi: 10.1061/(ASCE)WW.1943-5460.0000048 CrossRefGoogle Scholar
  5. 5.
    Chanson H (2011a) Tidal bores, Aegir, Eagre, Mascaret, Pororoca: theory and observations. World Scientific, Singapore ISBN 9789814335416CrossRefGoogle Scholar
  6. 6.
    Chanson H (2011b) Current knowledge in tidal bores and their environmental, ecological and cultural impacts. Environ Fluid Mech 11(1):77–98. doi: 10.1007/s10652-009-9160-5 CrossRefGoogle Scholar
  7. 7.
    Chanson H (2012) Momentum considerations in hydraulic jumps and bores. J Irrigation Drainage Eng 138(4):382–385. doi: 10.1061/(ASCE)IR.1943-4774.0000409 CrossRefGoogle Scholar
  8. 8.
    Chanson H, Trevethan M (2011) Vertical mixing in the fully developed turbulent layer of sediment-laden open-channel flow. Discussion. J Hydraul Eng 137(9):1095–1097. doi: 10.1061/(ASCE)HY.1943-7900.0000218 CrossRefGoogle Scholar
  9. 9.
    Chanson H, Jarny S, Coussot P (2006) Dam break wave of thixotropic fluid. J Hydraul Eng 132(3):280–293. doi: 10.1061/(ASCE)0733-9429(2006)132:3(280) Google Scholar
  10. 10.
    Chanson H, Takeuchi M, Trevethan M (2007) High-frequency suspended sediment flux measurements in a small estuary. In: Sommerfield M (ed) Proceedings of 6th international conference on multiphase flow ICMF 2007, Leipzig, Germany, July 9–13, Session 7, Paper no. S7\_Mon\_C\_S7\_Mon\_C\_5, (CD-ROM), ISBN 978-3-86010-913-7Google Scholar
  11. 11.
    Chanson H, Reungoat D, Simon B, Lubin P (2011) High-frequency turbulence and suspended sediment concentration measurements in the Garonne River tidal bore. Estuar Coast Shelf Sci 95(2–3):298–306. doi: 10.1016/j.ecss.2011.09.012 CrossRefGoogle Scholar
  12. 12.
    Chen S (2003) Tidal bore in the North branch of the Changjiang Estuary. In: International Research & Training Center on Erosion & Sedimentation (ed) Proceedings of internatioanl conference on estuaries & coasts ICEC-2003, vol 1, Hangzhou, China, November 8–11. pp 233–239Google Scholar
  13. 13.
    Chen J, Lui C, Zhang C, Walker HJ (1990) Geomorphological development and sedimentation in Qiantang Estuary and Hangzhou Bay. J Coastal Res 6(3):559–572Google Scholar
  14. 14.
    Coussot P (1997) Mudflow rheology and dynamics. IAHR Monograph, BalkemaGoogle Scholar
  15. 15.
    Coussot P (2005) Rheometry of pastes, suspensions, and granular materials. Applications in industry and environment. Wiley, New YorkCrossRefGoogle Scholar
  16. 16.
    Docherty NJ, Chanson H (2012) Physical modelling of unsteady turbulence in breaking tidal bores. J Hydraul Eng 138(5):412–419. doi: 10.1061/(ASCE)HY.1943-7900.0000542 CrossRefGoogle Scholar
  17. 17.
    Donnelly C, Chanson H (2005) Environmental impact of undular tidal bores in Tropical Rivers. Environ Fluid Mech 5(5):481–494. doi: 10.1007/s10652-005-0711-0 CrossRefGoogle Scholar
  18. 18.
    Furuyama S, Chanson H (2010) A numerical solution of a tidal bore flow. Coast Eng J 52(3):215–234. doi: 10.1142/S057856341000218X CrossRefGoogle Scholar
  19. 19.
    Graf WH (1971) Hydraulics of sediment transport. McGraw-Hill, New YorkGoogle Scholar
  20. 20.
    Greb SF, Archer AW (2007) Soft-sediment deformation produced by tides in a meizoseismic area, Turnagain Arm, Alaska. Geology 35(5):435–438CrossRefGoogle Scholar
  21. 21.
    Guerrero M, Szupiany RN, Amsler M (2011) Comparison of acoustic backscattering techniques for suspended sediments investigation. Flow Meas Instr 22:392–401CrossRefGoogle Scholar
  22. 22.
    Ha HK, Hsu WY, Maa JPY, Shao YY, Holland CW (2009) Using ADV backscatter strength for measuring suspended cohesive sediment concentration. Cont Shelf Res 29:1310–1316CrossRefGoogle Scholar
  23. 23.
    Hobson PM (2008) Rheologic and flume erosion characteristics of Georgia sediments from Bridge Foundations. MSc. thesis, Georgia Institute of Technology, School of Civil and, Environmental EngineeringGoogle Scholar
  24. 24.
    Hornung HG, Willert C, Turner S (1995) The flow field downstream of a hydraulic jump. J Fluid Mech 287:299–316CrossRefGoogle Scholar
  25. 25.
    Julien PY (1995) Erosion and sedimentation. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  26. 26.
    Khezri N, Chanson H (2012) Inception of bed load motion beneath a bore. Geomorphology 153–154:39–47. doi: 10.1016/j.geomorph.2012.02.006 CrossRefGoogle Scholar
  27. 27.
    Kjerfve B, Ferreira HO (1993) Tidal bores: first ever measurements. Ciência e Cultura (J Braz Assoc Adv Sci) 45(2):135–138Google Scholar
  28. 28.
    Koch C, Chanson H (2009) Turbulence measurements in positive surges and bores. J Hydraul Res 47(1):29–40. doi: 10.3826/jhr.2009.2954 CrossRefGoogle Scholar
  29. 29.
    Lewis AW (1972) Field studies of a tidal bore in the River Dee. M.Sc. thesis, Marine Science Laboratories, University College of NorthWales, Bangor, UKGoogle Scholar
  30. 30.
    Liggett JA (1994) Fluid mechanics. McGraw-Hill, New York, USAGoogle Scholar
  31. 31.
    LighthillI J (1978) Waves in fluids. Cambridge University Press, CambridgeGoogle Scholar
  32. 32.
    Lubin P, Glockner S, Chanson H (2010) Numerical simulation of a weak breaking tidal bore. Mech Res Commun 37(1):119–121. doi: 10.1016/j.mechrescom.2009.09.008 CrossRefGoogle Scholar
  33. 33.
    McLelland SJ, Nicholas AP (2000) A new method for evaluating errors in high-frequency ADV measurements. Hydrol Process 14:351–366CrossRefGoogle Scholar
  34. 34.
    Mouaze D, Chanson H, Simon B (2010) Field measurements in the tidal bore of the Sélune River in the Bay of Mont Saint Michel (September 2010). Hydraulic model report no. CH81/10, School of Civil Engineering, The University of Queensland, Brisbane, Australia. ISBN 9781742720210Google Scholar
  35. 35.
    Moule AC (1923) The bore on the Ch’ien-T’ang River in China. T’oung Pao, Archives pour servir à l’étude de l’histoire, des langues, la geographie et l’ethnographie de l’Asie orientale (Chine, Japon, Corée, Indo-Chine, Asie Centrale et Malaisie), vol 22, pp 10–188Google Scholar
  36. 36.
    Otsubo K, Muraoko K (1988) Critical shear stress of cohesive bottom sediments. J Hydraul Eng 114(10):1241–1256CrossRefGoogle Scholar
  37. 37.
    Reungoat D, Chanson H, Caplain B (2012) Field measurements in the tidal bore of the Garonne River at Arcins (June 2012). Hydraulic model report no. CH89/12, School of Civil Engineering, The University of Queensland, Brisbane, Australia. ISBN 9781742720616Google Scholar
  38. 38.
    Roussel N, le Roy R, Coussot P (2004) Thixotropy modelling at local and macroscopic scales. J Non-Newton Fluid Mech 117(2–3):85–95CrossRefGoogle Scholar
  39. 39.
    Rowbotham F (1983) The Severn bore, 3rd edn. David & Charles, Newton AbbotGoogle Scholar
  40. 40.
    Simpson JH, Fisher NR, Wiles P (2004) Reynolds stress and TKE production in an estuary with a tidal bore. Estuar Coast Shelf Sci 60(4):619–627CrossRefGoogle Scholar
  41. 41.
    Tessier B, Terwindt JHJ (1994) An example of soft-sediment deformations in an intertidal environment—the effect of a tidal bore. Comptes-Rendus de l’Académie des Sciences, Série II, 319(2):217–233 (in French)Google Scholar
  42. 42.
    Toorman EA (2008) Vertical mixing in the fully developed turbulent layer of sediment-laden open-channel flow. J Hydraul Eng 134(9):1225–1235. doi: 10.1061/(ASCE)0733-9429 Google Scholar
  43. 43.
    Tricker RAR (1965) Bores, breakers, waves and wakes. American Elsevier Publ. Co., New YorkGoogle Scholar
  44. 44.
    Wan Z, Wang Z (1994) Hyperconcentrated flow. IAHR monograph. Balkema, RotterdamGoogle Scholar
  45. 45.
    Wolanski E, Williams D, Spagnol S, Chanson H (2004) Undular tidal bore dynamics in the Daly estuary, Northern Australia. Estuar Coast Shelf Sci 60(4):629–636CrossRefGoogle Scholar
  46. 46.
    Zhang JL, Liu DX (2011) Application of OBS-3A nephelometer in observation of tidal bore in Qiantang River. Ocean Technol 30(2):67–79 (in Chinese)Google Scholar
  47. 47.
    Zhou XJ, Gao S (2004) Spatial variability and representation of seabed sediment grain sizes: an example from the Zhoushan-Jinshanwei transect, Hangzhou Bay, China. Chin Sci Bull 49(23):2503–2507CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • David Reungoat
    • 1
  • Hubert Chanson
    • 2
  • Bastien Caplain
    • 1
  1. 1.Université de Bordeaux, CNRS UMR 5295I2M, 16 avenue Pey-BerlandPessacFrance
  2. 2.School of Civil EngineeringThe University of QueenslandBrisbaneAustralia

Personalised recommendations