Skip to main content
Log in

Integrated modelling of single port, steady-state thermal discharges in unstratified coastal waters

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

An integrated model is presented for the calculation of the discharge of thermal effluents from power plants into coastal waters; the model consists of the near field model CorJet and the far field model FLOW-3DL that are interconnected via an active coupling algorithm. Firstly, the model is validated using experimental data; moreover, calculations are compared with passive coupling simulations to identify the dominant differences among these methods. Then, the model is applied to simulate the single-port thermal discharge originating from a thermal power plant to the non-stratified coastal waters in the region of Mantoudi in Evia, Greece. Model predictions are compared with CORMIX far field estimations and calculations employing passive coupling. Calculations verify the need for the application of an integrated active model. The detailed information for the coupling algorithm that is contained in this paper, including its difficulties and their resolution, permits its implementation to any active coupling between practically any near field with any far field model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Stamou AI, Douka E, Nikiforakis I, Dimitriadis P, Jirka GH, Bleninger T (2009) An integrated modeling procedure for thermal discharges into coastal waters. In: Proceedings of CEMEPE, 2nd international conference on environmental management, engineering, planning and economics, (CEMEPE 09) & SECOTOX Conference Mykonos, Greece

  2. Zhang XY, Adams EE (1999) Prediction of near field plume characteristics using far field circulation model. J Hydraul Eng ASCE 125(3):233–241

    Article  Google Scholar 

  3. Tang H, Paik J, Sotiropoulos F, Kharaongakar T (2008) Three-dimensional numerical modeling of initial mixing of thermal discharges at real life configurations. J Hydraul Eng ASCE 134(9):1210–1224

    Article  Google Scholar 

  4. Suh SW (2001) A hybrid near-field/far-field thermal discharge model for coastal areas. Mar Pollut Bull 43(7–12):225–233

    Article  Google Scholar 

  5. Jiang J, Fissel DB, Lemon DD, Topham D (2002) Modeling cooling water discharges from the Burrard generating station, BC Canada. In: Proceedings of oceans (2002) MTS/IEEE. Biloxi, Mississippi, pp 1515–1521

  6. Choi KW, Lee JHW (2007) Distributed entrainment sink approach for the modeling mixing and transport in the intermediate field. J Hydraul Eng ASCE 133(7):804–815

    Article  Google Scholar 

  7. Blumberg AF, Mellor GL (1987) A description of a three-dimensional coastal ocean circulation model. In: Heaps N (ed) Three dimensional coastal ocean models, vol 4. American Geophysicists Union, Washington DC, pp 1–16

  8. Roberts PJW, Snyder WH, Baumgartner DJ (1989) Ocean outfalls I: submerged wastefield formation. J Hydraul Eng ASCE 115:1–25

    Google Scholar 

  9. Roberts PJW, Snyder WH, Baumgartner DJ (1989) Ocean outfalls II: spatial evolution of submerged wastefield. J Hydraul Eng ASCE 115:26–48

    Google Scholar 

  10. Roberts PJW, Snyder WH, Baumgartner DJ (1989) Ocean outfalls III: effect of diffuser design on submerged wastefield. J Hydraul Eng ASCE 115:49–70

    Google Scholar 

  11. Jones GR, Jirka GH (1993) CORMIX3: an expert system for the analysis and prediction of buoyant surface discharges. Tech Rep DeFrees Hydraulics Laboratory, Cornell University (also to be published by US EPA, Environmental Research Lab, Athens, Georgia, 1993)

  12. Westerink JJ, Stolzenbach KD, Connor JJ (1988) A frequency-time domain finite element model for tidal circulation based on the least-square harmonic analysis method. Int J Numer Meth Fluids 8(7):813–843

    Article  Google Scholar 

  13. Baptista AM, Adams EE, Stolzenbach KD (1984) Eulerian–Lagrangian analysis of pollutant transport in shallow water. R296, Ralph M Parsons Laboratory, Department of Civil and Environmental Engineering, MIT, Cambridge

  14. Kim YD, Seo IW, Kang SW, Oh BC (2001) Modeling the mixing of wastewater effluent discharged from ocean outfalls using a hybrid model. Coast Eng J 43(4):259–288

    Article  Google Scholar 

  15. Kim YD, Seo IW, Kang SW, Oh BC (2002) Jet integral-particle tracking hybrid model for single buoyant jets. J Hydraul Eng ASCE 128(8):753–760

    Article  Google Scholar 

  16. Bleninger T, Jirka GH (2004) Near- and far-field model coupling methodology for wastewater discharges. In: Proceedings of the 4th international symposium on environmental hydraulics and the 14th Congress of Asia and Pacific division, International Association of Hydraulic Engineering and Research, Hong Kong, China. Taylor and Francis, pp 447–453

  17. Jirka GH, Doneker RL, Hinton SW (1996) User’s manual for CORMIX: a hydrodynamic mixing zone model and decision support system for pollutant discharges into surface waters. US Environmental Protection Agency, Tech Rep, Environmental Research Lab, Athens

  18. Hydraulics Delft (2001) Delft3D user interface. Capabilities and applications, delft hydraulics. DHI, Danish Hydraulic Institute, Delft

  19. Lee JHW, Cheung V (1990) Generalized Lagrangian model for buoyant jets in a current. J Environ Eng ASCE 116(6):1085–1105

    Article  Google Scholar 

  20. Lee JHW, Chu V (2003) Turbulent jets and plumes–a Lagrangian approach. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  21. Hamrick JM (1992) A three-dimensional environmental fluid dynamics computer code: theoretical and computational aspects. Special Rep No 317. The college of William and Mary, Virginia Institute of Marine Science, Gloucester Point, VA

  22. Maderich V, Heling R, Bezhenar R, Brovchenko I, Jenner H, Koshebutskyy V, Kuschan A, Terletska K (2008) Development and application of 3D numerical model THREETOX to the prediction of cooling water transport and mixing in the inland and coastal waters. Hydrol Process 22:1000–1013

    Article  Google Scholar 

  23. Margvelashvili N, Maderich V, Zheleznyak M (1997) THREETOX-computer code to simulate three-dimensional dispersion of radio nuclides in homogeneous and stratified water bodies. Radiat Prot Dosim 73:177–180

    Article  Google Scholar 

  24. Jirka GH (2004) Integral model for turbulent buoyant jets in unbounded stratified flows: part I: single round jet. Environ Fluid Mech 4:1–56

    Article  Google Scholar 

  25. Stamou AI, Noutsopoulos C, Pipilis KG, Gavalaki E, Andreadakis A (1999a) Hydrodynamic and water quality modeling of Southern Evoikos Gulf-Greece. Global Nest Int J 1(2):5–15

    Google Scholar 

  26. Stamou AI, Memos CD, Kapetanaki ME (2007) Modeling water renewal in a coastal embayment. In: Proceedings of ICE. Marit Eng 160(3):93–104

  27. Stamou AI, Memos K, Pipilis K (1999b) Mathematical modelling of thermal discharges in coastal regions. In: Proceedings of the 28th IAHR Congress, Graz, Austria

  28. McCutcheon SC, Martin JL, Barnwell TO Jr (1993) Water quality. In Maidment DR (ed) Handbook of Hydrology, McGraw-Hill, New York, NY, p 11.3

  29. Smagorinsky J (1963) General circulation experiments with the primitive equations: I. The basic experiment. Mon Weather Rev 91:99–164

    Article  Google Scholar 

  30. Koutitas C, O’ Connor B (1980) Modelling 3-D wind induced flows. J Hydraul Div ASCE 106:1843–1865

    Google Scholar 

  31. Munk WH, Anderson ER (1948) Notes on a theory of the thermocline. J Mar Res 7:276–295

    Google Scholar 

  32. Pacanowski RC, Philander SGH (1981) Parameterization of vertical mixing in numerical models of tropical oceans. J Phys Oceanogr 11:1443–1451

    Article  Google Scholar 

  33. Adams EE, Harleman DRF, Jirka GH, Stolzenbach KD (1981) Heat disposal in the water environment. Course notes, R.M. Parsons Laboratory, MIT, Cambridge

  34. Miller BM, Peirson WL, Wang YC, Cox RJ (1996) An overview of numerical modeling of the Sydney deepwater outfall plumes. Mar Pollut Bull 33(7–12):147–159

    Article  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Heracleitus II. Investing in knowledge society through the European Social Fund. The authors also would like to thank Dr. R. L. Doneker, Assistant Research Professor in the Department of Civil and Environmental Engineering of the Portland State University and Dr. T. Bleninger, Adjunct Professor at the Federal University of Paraná for their helpful discussions regarding the FORTRAN subroutine CORJET. Thanks are also due to the Managing Director of IRON V SA Mr. K. Michalakis for technical and scientific discussions regarding the thermal power station at Mantoudi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios I. Stamou.

Appendix

Appendix

The starting point of the mentioned NF model calculation procedure is the end of the ZOFE, where the values of the eight variables are given by Eqs. (29)–(36)

$$\begin{aligned} \text{ Q}_\mathrm{e}&= \sqrt{2}\text{ Q}_\mathrm{o} \end{aligned}$$
(29)
$$\begin{aligned} \text{ M}_{\mathrm{Xe}}&= \text{ M}_\mathrm{o} \cos {\uptheta }_\mathrm{e} \cdot \cos {\upsigma }_\mathrm{e}\end{aligned}$$
(30)
$$\begin{aligned} \text{ M}_{\mathrm{Ye}}&= \text{ M}_\mathrm{o} \cos {\uptheta }_\mathrm{e} \cdot \sin {\upsigma }_\mathrm{e} \end{aligned}$$
(31)
$$\begin{aligned} \text{ M}_{\mathrm{Ze}}&= \text{ M}_\mathrm{o} \sin {\uptheta }_\mathrm{e} \end{aligned}$$
(32)
$$\begin{aligned} \text{ Q}_\mathrm{e} \cdot \Delta \text{ T}_{\mathrm{jete}}&= \text{ Q}_\mathrm{o} \cdot \Delta \text{ T}_{\mathrm{jeto}} \end{aligned}$$
(33)
$$\begin{aligned} \text{ X}_{\mathrm{jete}}&= \text{ L}_\mathrm{e} \cos \left( {\frac{\uptheta _\mathrm{o} +{\uptheta }_\mathrm{e} }{2}}\right)\cos \left( {\frac{\upsigma _\mathrm{o} +\upsigma _\mathrm{e} }{2}} \right) \end{aligned}$$
(34)
$$\begin{aligned} \text{ Y}_{\mathrm{jete}}&= \text{ L}_\mathrm{e} \cos \left( {\frac{\uptheta _\mathrm{o} +{\uptheta } _\mathrm{e} }{2}}\right)\sin \left( {\frac{\upsigma _\mathrm{o} +\upsigma _\mathrm{e} }{2}} \right) \end{aligned}$$
(35)
$$\begin{aligned} \text{ Z}_{\mathrm{jete}}&= \text{ Z}_\mathrm{o} +\text{ L}_\mathrm{e} \sin \left( {\frac{{\uptheta }_\mathrm{o} +{\uptheta } _\mathrm{e} }{2}} \right) \end{aligned}$$
(36)

and for the additional three variables \({\uptheta }_{\mathrm{e}}, \upsigma _{\mathrm{e}}\) and \(\text{ M}_{\mathrm{e}}\) at the end of ZOFE by Eqs. (37)–(39)

$$\begin{aligned} {\uptheta }_\mathrm{e}&= \sin ^{-1}\left( {\sin {\upgamma }_\mathrm{e} \sin \delta _\mathrm{o} }\right)\end{aligned}$$
(37)
$$\begin{aligned} {\upsigma }_\mathrm{e}&= \tan ^{-1}({\sin {\upgamma } _\mathrm{e} \cos \delta _\mathrm{o} }/{\cos {\upgamma } _\mathrm{e} )}\end{aligned}$$
(38)
$$\begin{aligned} \text{ M}_\mathrm{e}&= \text{ M}_\mathrm{o} \end{aligned}$$
(39)

In the above equations the subscript “o” refers to the values of the variables at the discharge location and the subscript “e” refers to their values at the end of ZOFE. \(\text{ L}_{\mathrm{e}}\) is the modified ZOFE length, \({\upgamma }_{\mathrm{o}}\) is the transverse discharge angle relative to the ambient current direction, \(\delta _{\mathrm{o}}\) is the projection of \({\upgamma }_{\mathrm{o}}\) onto the x–y plane and \({\upgamma }_{\mathrm{e}}\) is the final transverse angle of the \(\text{ L}_{\mathrm{e}}\), calculated by Eqs. (40)–(44). \(\text{ U}_{\mathrm{o}}\) in Eq. (44) and \(\text{ Fr}_{\mathrm{o}}\) in Eq. (40) are the discharge velocity and the densimetric Froude number, respectively, at the location of discharge.

$$\begin{aligned}&\displaystyle \text{ L}_\mathrm{e} =5\cdot \text{ D}\cdot (1-3.22\sin {\upgamma }_\mathrm{o} /\text{ R})\cdot (1-\text{ e}^{{-2\text{ Fr}_\mathrm{o}}/{4.67}})\end{aligned}$$
(40)
$$\begin{aligned}&\displaystyle {\upgamma }_\mathrm{o} =\sin ^{-1}\left( {\sqrt{1-\cos ^{2} _\mathrm{o} \cdot \cos ^{2}{\upsigma } _\mathrm{o} }} \right)\end{aligned}$$
(41)
$$\begin{aligned}&\displaystyle \delta _\mathrm{o} =\tan ^{-1}\left( {\frac{\tan {\uptheta }_\mathrm{o} }{\sin \upsigma _\mathrm{o} }} \right) \end{aligned}$$
(42)
$$\begin{aligned}&\displaystyle {\upgamma } _\mathrm{e} =\tan ^{-1}\left( {\frac{\sin {\upgamma } _\mathrm{o} }{\cos {\upgamma }_\mathrm{o} +(\sqrt{2}-1)/\text{ R}}} \right) \end{aligned}$$
(43)
$$\begin{aligned}&\displaystyle \text{ R}=\frac{\text{ U}_\mathrm{o} }{\text{ u}_\mathrm{a} } \end{aligned}$$
(44)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamou, A.I., Nikiforakis, I.K. Integrated modelling of single port, steady-state thermal discharges in unstratified coastal waters. Environ Fluid Mech 13, 309–336 (2013). https://doi.org/10.1007/s10652-012-9266-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-012-9266-z

Keywords

Navigation