Environmental Fluid Mechanics

, Volume 8, Issue 5–6, pp 495–509 | Cite as

Quantifying vertical mixing in estuaries

  • W. Rockwell Geyer
  • Malcolm E. Scully
  • David K. Ralston
Open Access
Original Article


Estuarine turbulence is notable in that both the dissipation rate and the buoyancy frequency extend to much higher values than in other natural environments. The high dissipation rates lead to a distinct inertial subrange in the velocity and scalar spectra, which can be exploited for quantifying the turbulence quantities. However, high buoyancy frequencies lead to small Ozmidov scales, which require high sampling rates and small spatial aperture to resolve the turbulent fluxes. A set of observations in a highly stratified estuary demonstrate the effectiveness of a vessel-mounted turbulence array for resolving turbulent processes, and for relating the turbulence to the forcing by the Reynolds-averaged flow. The observations focus on the ebb, when most of the buoyancy flux occurs. Three stages of mixing are observed: (1) intermittent and localized but intense shear instability during the early ebb; (2) continuous and relatively homogeneous shear-induced mixing during the mid-ebb, and weakly stratified, boundary-layer mixing during the late ebb. The mixing efficiency as quantified by the flux Richardson number Rf was frequently observed to be higher than the canonical value of 0.15 from Osborn (J Phys Oceanogr 10:83–89, 1980). The high efficiency may be linked to the temporal–spatial evolution of shear instabilities.


Turbulence Estuaries Shear instability Buoyancy flux 



The funding for this research was obtained from ONR Grant N00014-06-1-0292 and NSF Grant OCE-0729547.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution,and reproduction in any medium, provided the original author(s) and source are credited.


  1. 1.
    Chatwin PC (1976) Some remarks on the maintenance of the salinity distribution in estuaries. Estuar Coast Mar Sci 4: 555–566. doi: 10.1016/0302-3524(76)90030-X CrossRefGoogle Scholar
  2. 2.
    Dillon TM (1982) Vertical overturns: a comparison of Thorpe and Ozmidov length scales. J Geophys Res 87: 9601–9613. doi: 10.1029/JC087iC12p09601 CrossRefGoogle Scholar
  3. 3.
    Gargett AE (1994) Observing turbulence with a modified acoustic Doppler current profiler. J Atmos Ocean Technol 11:1592–1610. doi:10.1175/1520-0426(1994)011<1592:OTWAMA>2.0.CO;2Google Scholar
  4. 4.
    Gerbi GP, Trowbridge JH, Edson JB, Plueddemann AJ, Terray EA, Fredericks JJ (2008) Direct covariance measurements of momentum and heat transfer across the air-sea interface. J Phys Oceanogr 38: 1054–1072. doi: 10.1175/2007JPO3739.1 CrossRefGoogle Scholar
  5. 5.
    Geyer WR, Smith JD (1987) Shear instability in a highly stratified estuary. J Phys Oceanogr 17: 1668–1679CrossRefGoogle Scholar
  6. 6.
    Gordon CM, Dohne CF (1973) Some observations of turbulent flow in a tidal estuary. J Geophys Res 78: 1971–1978. doi: 10.1029/JC078i012p01971 CrossRefGoogle Scholar
  7. 7.
    Gregg MC (1984) Entropy generation in the ocean by small-scale mixing. J Phys Oceanogr 14:688–711. doi:10.1175/1520-0485(1984)014<0688:EGITOB>2.0.CO;2Google Scholar
  8. 8.
    Hansen DV, Rattray M (1965) Gravitational circulation in straits and estuaries. J Mar Res 23: 104–122Google Scholar
  9. 9.
    Kaimal JC, Wyngaard JC, Izumi Y, Cote OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Metab Soc 98: 563–589. doi: 10.1002/qj.49709841707 CrossRefGoogle Scholar
  10. 10.
    Koop CG, Browand FK (1979) Instability and turbulence in a stratified fluid with shear. J Fluid Mech 93: 135–159. doi: 10.1017/S0022112079001828 CrossRefGoogle Scholar
  11. 11.
    Ledwell JR, Watson AJ, Law CS (1993) Evidence for slow mixing across the pycocline from an open-ocean tracer-release experiment. Nature 364: 701–703. doi: 10.1038/364701a0 CrossRefGoogle Scholar
  12. 12.
    Miles JW (1961) On the stability of heterogeneous shear flow. J Fluid Mech 10: 496–506. doi: 10.1017/S0022112061000305 CrossRefGoogle Scholar
  13. 13.
    Osborn TR (1980) Estimates of the local rate of vertical diffusion from dissipation measurements. J Phys Oceanogr 10:83–89. doi:10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2Google Scholar
  14. 14.
    Osborn TR, Cox CS (1972) Oceanic fine structure. Geophys Fluid Dyn 3: 321–345. doi: 10.1080/03091927208236085 CrossRefGoogle Scholar
  15. 15.
    Pardyjak ER, Monti P, Fernando HJS (2002) Flux Richardson number measurements in stable atmospheric shear flows. J Fluid Mech 459: 307–316. doi: 10.1017/S0022112002008406 CrossRefGoogle Scholar
  16. 16.
    Peters H (2003) Broadly distributed and locally enhanced turbulent mixing in a tidal estuary. J Phys Oceanogr 33:1967–1977. doi:10.1175/1520-0485(2003)033<1967:BDALET>2.0.CO;2Google Scholar
  17. 17.
    Pritchard DW (1952) Salinity distribution and circulation in the Chesapeake Bay estuarine system. J Mar Res 11: 106–123Google Scholar
  18. 18.
    Rohr JJ, Itsweire EC, Helland KN, Van Atta CW (1988) Growth and decay of turbulence in a stably stratified shear flow. J Fluid Mech 195: 77–111. doi: 10.1017/S0022112088002332 CrossRefGoogle Scholar
  19. 19.
    Seim HE, Gregg MC (1994) Detailed observations of a naturally occurring shear instability. J Geophys Res 100: 4943–4958. doi: 10.1029/94JC03199 CrossRefGoogle Scholar
  20. 20.
    Shaw WJ, Trowbridge JH, Williams AJ III (2001) Budgets of turbulent kinetic energy and scalar variance in the continental shelf bottom boundary layer. J Geophys Res 106: 9551–9564. doi: 10.1029/2000JC000240 CrossRefGoogle Scholar
  21. 21.
    Smyth WD, Moum JN (2000) Length scales of turbulence in stably stratified mixing layers. Phys Fluids 12: 1327–1342. doi: 10.1063/1.870385 CrossRefGoogle Scholar
  22. 22.
    Smyth WD, Moum JN, Caldwell DR (2001) The efficiency of mixing in turbulent patches:inferences from direct numerical simulations and microstructure observations. J Phys Oceanogr 31: 1969–1992CrossRefGoogle Scholar
  23. 23.
    Stacey MT, Monismith SG, Burau JR (1999) Observations of turbulence in a partially stratified estuary. J Phys Oceanogr 29:1950–1970. doi:10.1175/1520-0485(1999)029<1950:OOTIAP>2.0.CO;2Google Scholar
  24. 24.
    Thorpe SA (1973) Experiments on instability and turbulence in a stratified shear flow. J Fluid Mech 61(4): 731–751. doi: 10.1017/S0022112073000911 CrossRefGoogle Scholar
  25. 25.
    Trowbridge JH, Geyer WR, Bowen MM, Williams AJ (1999) Near-bottom turbulence measurements in a partially mixed estuary: turbulent energy balance, velocity structure, and along-channel momentum balance. J Phys Oceanogr 29:3056–3072. doi:10.1175/1520-0485(1999)029<3056:NBTMIA>2.0.CO;2Google Scholar

Copyright information

© The Author(s) 2008

Authors and Affiliations

  • W. Rockwell Geyer
    • 1
  • Malcolm E. Scully
    • 2
  • David K. Ralston
    • 1
  1. 1.Applied Ocean Physics and EngineeringWoods Hole Oceanographic InstitutionWoods HoleUSA
  2. 2.Center for Coastal Physical OceanographyOld Dominion UniversityNorfolkUSA

Personalised recommendations