Advertisement

Environmental Fluid Mechanics

, Volume 9, Issue 1, pp 43–58 | Cite as

The impact of chemical lateral boundary conditions on CMAQ predictions of tropospheric ozone over the continental United States

  • Youhua Tang
  • Pius Lee
  • Marina Tsidulko
  • Ho-Chun Huang
  • Jeffery T. McQueen
  • Geoffrey J. DiMego
  • Louisa K. Emmons
  • Robert B. Pierce
  • Anne M. Thompson
  • Hsin-Mu Lin
  • Daiwen Kang
  • Daniel Tong
  • Shaocai Yu
  • Rohit Mathur
  • Jonathan E. Pleim
  • Tanya L. Otte
  • George Pouliot
  • Jeffrey O. Young
  • Kenneth L. Schere
  • Paula M. Davidson
  • Ivanka Stajner
Original Article

Abstract

A sensitivity study is performed to examine the impact of lateral boundary conditions (LBCs) on the NOAA-EPA operational Air Quality Forecast Guidance over continental USA. We examined six LBCS: the fixed profile LBC, three global LBCs, and two ozonesonde LBCs for summer 2006. The simulated results from these six runs are compared to IONS ozonesonde and surface ozone measurements from August 1 to 5, 2006. The choice of LBCs can affect the ozone prediction throughout the domain, and mainly influence the predictions in upper altitude or near inflow boundaries, such as the US west coast and the northern border. Statistical results shows that the use of global model predictions for LBCs could improve the correlation coefficients of surface ozone prediction over the US west coast, but could also increase the ozone mean bias in most regions of the domain depending on global models. In this study, the use of the MOZART (Model for Ozone And Related chemical Tracers) prediction for CMAQ (Community Multiscale Air Quality) LBC shows a better surface ozone prediction than that with fixed LBC, especially over the US west coast. The LBCs derived from ozonesonde measurements yielded better O3 correlations in the upper troposphere.

Keywords

Air quality model CMAQ Boundary condition Ozonesonde AIRNOW Chemical transport model Ozone prediction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Byun DW, Schere KL (2006) Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl Mech Rev 59: 51–77CrossRefGoogle Scholar
  2. 2.
    Chen F, Dudhia J (2001) Coupling an advanced land-surface/hydrology model with the Penn State/ NCAR MM5 modeling system. Part I: model description and implementation. Mon Wea Rev 129: 569–585CrossRefGoogle Scholar
  3. 3.
    Ferrier BS, Jin Y, Lin Y, Black T, Rogers E, DiMego G (2002) Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. Preprints, 15th conference on numerical weather prediction, San Antonio, TX, American Meteorological Society, pp 280–283Google Scholar
  4. 4.
    Gery MW, Whitten GZ, Killus JP, Dodge MC (1989) A photochemical kinetics mechanism for urban and regional scale computer modeling. J Geophys Res 94: 925–956CrossRefGoogle Scholar
  5. 5.
    Granier C et al (2004) Present and future surface emissions of atmospheric compounds. Rep EVK 2199900011, Eur Comm, BrusselsGoogle Scholar
  6. 6.
    Horowitz LW et al (2003) A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J Geophys Res 108(D24): 4784. doi: 10.1029/2002JD002853 CrossRefGoogle Scholar
  7. 7.
    Jacob DJ, Logan JA, Murti PP (2001) Effect of rising Asian emissions on surface ozone in the United States. Geophys Res Lett 26(14): 2175–2178CrossRefGoogle Scholar
  8. 8.
    Jaffe D, Price H, Parrish D, Goldstein A, Harris J (2003) Increasing background ozone during spring on the west coast of North America. Geophys Res Lett 30(12)Google Scholar
  9. 9.
    Janjic Z (1994) The Step-Mountain Eta coordinate model: further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon Wea Rev 928: 927–945CrossRefGoogle Scholar
  10. 10.
    Janjic ZI (2002) Nonsingular implementation of the Mellor–Yamada level 2.5 Scheme in the NCEP Meso model. NCEP Office Note, No. 437, 61 ppGoogle Scholar
  11. 11.
    Janjic ZI (2003) A nonhydrostatic model based on a new approach. Meteor Atmos Phys 82: 271–285CrossRefGoogle Scholar
  12. 12.
    Kondragunta S, Lee P, McQueen J, Kittaka C, Prados A, Ciren P, Laszlo I, Pierce B, Hoff R, Szykman J (2008) Air quality forecast verification using satellite data. J Appl Meteor Climatol, in pressGoogle Scholar
  13. 13.
    Lee P, McKeen S, McQueen J, Kang D, Tsidulk M, Lu S, Lin H-M, DiMego G, Seaman N, Davidson P (2007) Air quality forecast using WRF/NMM-CMAQ during the TexAQS. Preprints, 9th conference on Atmos. Chem./, American Meteorological Soceity, San Antonio, TX, 15–18, Jan 2007, pp 1–6Google Scholar
  14. 14.
    Lee PC, Kang D, McQueen J, Tsidulko M, Hart M, DiMego G, Seaman N, Davidson P (2008) Impact of domain size on modeled ozone forecasts for the Northeastern US. J Appl Meteor Climatol 47(2): 443–461CrossRefGoogle Scholar
  15. 15.
    Lee PS et al (this issue) Impact of consistent boundary layer mixing approaches between NAM and CMAQ, submitted to Environ Fluid Mechan (CMAS special issue)Google Scholar
  16. 16.
    McLinden CA, Olsen SC, Hannegan B, Wild O, Prather MJ (2000) Stratospheric ozone in 3-D models: a simple chemistry and the cross-tropopause flux. J Geophys Res 105(D11): 14,653–14,665CrossRefGoogle Scholar
  17. 17.
    Moorthi S, Iredell M (1998) Prognostic ozone: changes to the 1998 NCEP operational MRF model analysis/forecast system: the use of TOVS level 1-b radiances and increased vertical diffusion. Available at http://www.nws.noaa.gov/om/tpb/449.htm from the National Weather Service, Office of Meteorology, 1325 East-West Highway, Silver Spring, MD 20910
  18. 18.
    NCEP (2004) GFS—Global data assimilation. Available at http://wwwt.emc.ncep.noaa.gov/gmb/gdas/
  19. 19.
    Newchurch MJ, Ayoub MA, Oltmans S, Johnson B, Schmidlin FJ (2003) Vertical distribution of ozone at four sites in the United States. J Geophys Res 108(D1): 4031. doi: 10.1029/2002JD002059 CrossRefGoogle Scholar
  20. 20.
    Otte TL, Pouliot G, Pleim JE, Young JO, Schere KL, Wong DC, Lee PCS, Tsidulko M, McQueen JT, Davidson P, Mathur R, Chuang H-Y, DiMego G, Seaman NL (2005) Linking the Eta model with the Community Multiscale Air Quality (CMAQ) modeling system to build a national air quality forecasting system. Wea Forecast 20: 367–384CrossRefGoogle Scholar
  21. 21.
    Pfister G, Hess PG, Emmons LK, Lamarque J-F, Wiedinmyer C, Edwards DP, Pétron G, Gille JC, Sachse GW (2005) Quantifying CO emissions from the 2004 Alaskan wildfires using MOPITT CO data. Geophys Res Lett 32: L11809. doi: 10.1029/2005GL022995 CrossRefGoogle Scholar
  22. 22.
    Pierce T, Geron C, Bender L, Dennis R, Tonnesen G, Guenther A (1998) Influence of increased isoprene emissions on regional ozone modeling. J Geophys Res 103: 25611–25629CrossRefGoogle Scholar
  23. 23.
    Pierce RB, Al-Saadi JA, Schaack T, Lenzen A, Zapotocny T, Johnson D, Kittaka C, Buker M, Hitchman MH, Tripoli G, Fairlie TD, Olson JR, Natarajan M, Crawford J, Fishman J, Avery MA, Browell EV, Creilson J, Kondo Y, Sandholm ST (2003) Regional Air Quality Modeling System (RAQMS) predictions of the tropospheric ozone budget over east Asia. J Geophys Res 108(D21): 8825. doi: 10.1029/2002JD003176 CrossRefGoogle Scholar
  24. 24.
    Pierce RB, Schaack T, Al-Saadi JA, Fairlie TD, Kittaka C, Lingenfelser G, Natarajan M, Olson J, Soja A, Zapotocny T, Lenzen A, Stobie J, Johnson D, Avery MA, Sachse GW, Thompson A, Cohen R, Dibb JE, Crawford J, Rault D, Martin R, Szykman J, Fishman1 J (2007) Chemical data assimilation estimates of continental US ozone and nitrogen budgets during the intercontinental chemical transport experiment-North America. J Geophys Res 112(D12S21):. doi: 10.1029/2006JD007722
  25. 25.
    Pleim JE (2007) A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: model description and testing. J Appl Meteor Climatol 46: 1383–1395CrossRefGoogle Scholar
  26. 26.
    Pleim JE, Xiu A, Finkelstein PL, Otte TL (2001) A coupled land-surface and dry deposition model and comparison to field measurements of surface heat, moisture, and ozone fluxes. Water Air Soil Pollut Focus 1: 243–252CrossRefGoogle Scholar
  27. 27.
    Rood R, Douglas AR, Kaye JA, Geller MA, Chen CY, Allen DJ, Larsen EM, Nash ER, Nielsen JE (1991) Three-dimensional simulations of wintertime ozone variability in the lower stratosphere. J Geophys Res 96(D3): 5055–5071CrossRefGoogle Scholar
  28. 28.
    Stobie JM (1985) The use of optimum interpolation at AFGWC. Paper presented at 7th conference on numerical weather prediction. American Meteorological Society, Montreal, Que., CanadaGoogle Scholar
  29. 29.
    Stobie JM (2000) Algorithm theoretical basis document for statistical digital filter (SDF) analysis system (stretch-grid version). Data Assim. Off., NASA Goddard Space Flight Cent., Greenbelt, MDGoogle Scholar
  30. 30.
    Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, Klimont Z, Nelson SM, Tsai NY, Wang MQ, Woo J-H, Yarber KF (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res 108(D21): 8809. doi: 10.1029/2002JD003093 CrossRefGoogle Scholar
  31. 31.
    Tang Y, Carmichael GR, Horowitz LW, Uno I, Woo J-H, Streets DG, Dabdub D, Kurata G, Sandu A, Allan J, Atlas E, Flocke F, Huey LG, Jakoubek RO, Millet DB, Quinn PK, Roberts JM, Williams EJ, Nowak JB, Worsnop DR, Goldstein A, Donnelly S, Schauffler S, Stroud V, Johnson K, Avery MA, Singh HB, Apel EC (2004) Multi-scale Simulations of Tropospheric Chemistry in the Eastern Pacific and US West Coast during Spring 2002. J Geophys Res 109: D23S11. doi: 10.1029/2004JD004513 CrossRefGoogle Scholar
  32. 32.
    Tang Y, Carmichael GR, Thongboonchoo N, Chai T, Horowitz LW, Pierce RB, Al-Saadi JA, Pfister G, Vukovich JM, Avery MA, Sachse GW, Ryerson TB, Holloway JS, Atlas EL, Flocke FM, Weber RJ, Huey LG, Dibb JE, Streets DG, Brune WH (2007) Influence of lateral and top boundary conditions on regional air quality prediction: a multiscale study coupling regional and global chemical transport models. J Geophys Res 112: D10S18. doi: 10.1029/2006JD007515 CrossRefGoogle Scholar
  33. 33.
    Thompson AM, Stone JB, Witte JC, Miller SK, Oltmans SJ, Kucsera TL, Ross KL, Pickering KE, Merrill JT, Forbes G, Tarasick DW, Joseph E, Schmidlin FJ, McMillan WW, Warner J, Hintsa EJ, Johnson JE (2007) Intercontinental chemical transport experiment ozonesonde network study (IONS) 2004:1. Summertime upper troposphere/lower stratosphere ozone over northeastern North America. J Geophys Res 112: D12S12. doi: 10.1029/2006JD007441 Google Scholar
  34. 34.
    Thompson AM, Yorks JE, Miller SK, Witte JC, Dougherty KM, Morris GA, Baumgardner D, Ladino L, Rappenglueck B (2008) Free tropospheric ozone sources and wave activity over Mexico City and Houston during MILAGRO/Intercontinental Transport Experiment (INTEXB) Ozonesonde Network Study, 2006 (IONS-06). Atmos Chem Phys Discuss 8: 5979–6007Google Scholar
  35. 35.
    van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Kasibhatla PS, Arellano AF Jr (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmos Chem Phys 6: 3423–3441CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Youhua Tang
    • 1
    • 2
  • Pius Lee
    • 1
  • Marina Tsidulko
    • 1
  • Ho-Chun Huang
    • 1
  • Jeffery T. McQueen
    • 2
  • Geoffrey J. DiMego
    • 2
  • Louisa K. Emmons
    • 3
  • Robert B. Pierce
    • 4
  • Anne M. Thompson
    • 5
  • Hsin-Mu Lin
    • 6
  • Daiwen Kang
    • 6
  • Daniel Tong
    • 6
  • Shaocai Yu
    • 6
  • Rohit Mathur
    • 7
  • Jonathan E. Pleim
    • 7
  • Tanya L. Otte
    • 7
  • George Pouliot
    • 7
  • Jeffrey O. Young
    • 7
  • Kenneth L. Schere
    • 7
  • Paula M. Davidson
    • 8
  • Ivanka Stajner
    • 9
  1. 1.Scientific Applications International CorporationCamp SpringsUSA
  2. 2.NOAA/NWS/NCEP/EMCCamp SpringsUSA
  3. 3.National Center for Atmospheric ResearchBoulderUSA
  4. 4.NOAA/NESDIS Advanced Satellite Products BranchMadisonUSA
  5. 5.Department of MeteorologyPennsylvania State UniversityUniversity ParkUSA
  6. 6.Science and Technology CorporationHamptonUSA
  7. 7.EPA National Exposure Research LaboratoryResearch Triangle ParkUSA
  8. 8.Office of Science and TechnologyNOAA/National Weather ServiceSilver SpringUSA
  9. 9.Noblis IncFalls ChurchUSA

Personalised recommendations