Environmental Fluid Mechanics

, Volume 9, Issue 1, pp 109–120 | Cite as

Performance evaluation of NOAA-EPA developmental aerosol forecasts

  • Jerry Lee Gorline
  • Pius Lee
Original Article


To aid air quality model development and assess air quality forecasts, the Meteorological Development Laboratory (MDL) provided categorical verification metrics for developmental aerosol predictions. The National Air Quality Forecasting Capability (NAQFC) generated 48 h (of) gridded hourly developmental predictions for the lower 48 states (CONUS) domain in 12 km horizontal spacing. The NAQFC uses the North American Mesoscale (NAM) model with EPA’s Community Multiscale Air Quality (CMAQ) model to produce predictions of ground level aerosol concentrations. We used bilinear interpolation to calculate predicted daily maximum values at the location of the observation sites. We compared these interpolated predicted values to the observed daily maximum to produce 2 × 2 contingency tables, with a threshold of 40 μg/m3 during the months of March–August, 2007. The model showed some degree of skill in predicting aerosol exceedances. These results are preliminary as the NAQFC model for aerosol prediction is in the developmental stage. A more comprehensive performance evaluation will be accomplished in 2008, when more data become available. Our verification metrics included categorical analyses for Fraction Correct (FC) or percent correct (FC × 100), Threat Score (TS) or Critical Success Index (CSI), Probability of Detection (POD), and the False Alarm Rate (FAR), Mean Absolute Error (MAE) and mean algebraic error or bias, where bias is forecast minus observation. Graphic products included weekly statistics for the CONUS displayed in the form of bar charts, scatterplots, and graphs. In addition, we split the CONUS into six geographic regions and provided regional statistics on a monthly basis. MDL produced spatial maps of daily 1-h maximum predicted aerosol values overlaid with the corresponding point observations. MDL also provided spatial maps of the daily maximum of the 24-h running average. We derived the 24-h running average from the 1-h average predicted aerosol values and observations.


Air quality forecasting Aerosols Prediction Verification AQF CMAQ NOAA NWS NCEP EPA 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binkowski FS, Roselle SJ (2003) Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component: 1: model description. J Geophys Res 108(D6): 4183. doi: 10.1029/2001JD001409 CrossRefGoogle Scholar
  2. 2.
    Eder B, Kang D, Mathur R, Yu S, Schere K (2006) An operational evaluation of the Eta-CMAQ air quality forecast model. Atmos Environ 40(26): 4894–4905. doi: 10.1016/j.atmosenv.2005.12.062 CrossRefGoogle Scholar
  3. 3.
    Gery MW, Whitten GZ, Killus JP, Dodge MC (1989) A photochemical kinetics mechanism for urban and regional scale computer modeling. J Geophys Res 94: 925–956. doi: 10.1029/JD094iD10p12925 CrossRefGoogle Scholar
  4. 4.
    Janjic ZI (2003) A nonhydrostatic model based on a new approach. Meteorol Atmos Phys 82: 271–285. doi: 10.1007/s00703-001-0587-6 CrossRefGoogle Scholar
  5. 5.
    Jiang W, Smyth S, Giroux E, Roth H, Yin D (2006) Differences between CMAQ fine mode particle and PM_2.5 concentrations and their impact on model performance evaluation in the lower Fraser valley. Atmos Environ 40: 4973–4985. doi: 10.1016/j.atmosenv.2005.10.069 CrossRefGoogle Scholar
  6. 6.
    Lee P, Mathur R, McQueen J, Kondragunta S, Pleim J, Young J etal (2005) Eta CMAQ modeling system’s capability to provide PM2.5 and aerosol optical thickness forecast. Preprints, 7th conference on atmospheric chemistry, January, 10–13, 2005, San Diego, California. American Meteorological Society, Boston, CD-ROM 4.6Google Scholar
  7. 7.
    Mebust MR, Eder BK, Binkowski FS, Roselle SJ (2003) Models-3 Community Multiscale Air Quality (CMAQ) model aerosol component: 2: model evaluation. J Geophys Res 108(D6): 4184. doi: 10.1029/2001JD001410 CrossRefGoogle Scholar
  8. 8.
    Schell B, Ackermann IJ, Hass H, Binkowski FS, Ebel A (2001) Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J Geophys Res 106: 28275–28293. doi: 10.1029/2001JD000384 CrossRefGoogle Scholar
  9. 9.
    Wilks DS (1995) Statistical methods in the atmosphic sciences: an introduction. Academic Press, New York, pp 238–241Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Meteorological Development Laboratory, National Weather Service (NWS)NOAASilver SpringUSA
  2. 2.Scientific Applications International CorporationBeltsvilleUSA

Personalised recommendations