Environmental Fluid Mechanics

, Volume 7, Issue 3, pp 195–215 | Cite as

Comparison of dynamic subgrid-scale models for simulations of neutrally buoyant shear-driven atmospheric boundary layer flows

  • William C. Anderson
  • Sukanta Basu
  • Chris W. Letchford
Original Article


Several non-dynamic, scale-invariant, and scale-dependent dynamic subgrid-scale (SGS) models are utilized in large-eddy simulations of shear-driven neutral atmospheric boundary layer (ABL) flows. The popular Smagorinsky closure and an alternative closure based on Kolmogorov’s scaling hypothesis are used as SGS base models. Our results show that, in the context of neutral ABL regime, the dynamic modeling approach is extremely useful, and reproduces several establised results (e.g., the surface layer similarity theory) with fidelity. The scale-dependence framework, in general, improves the near-surface statistics from the Smagorinsky model-based simulations. We also note that the local averaging-based dynamic SGS models perform significantly better than their planar averaging-based counterparts. Lastly, we find more or less consistent superiority of the Smagorinsky-based SGS models (over the corresponding Kolmogorov’s scaling hypothesis-based SGS models) for predicting the inertial range scaling of spectra.


Atmospheric boundary layer Large-eddy simulation Neutral Subgrid-scale Turbulence 



Atmospheric boundary layer


Locally averaged (scale-invariant) dynamic


Locally averaged scale-dependent dynamic


Large-eddy simulation


Neutral boundary layer


Planar averaged (scale-invariant) dynamic


Planar averaged scale-dependent dynamic




Turbulence kinetic energy


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Germano M, Piomelli U, Moin P and Cabot WH (1991). A dynamic subgrid-scale eddy viscosity model. Phys Fluids A 3: 1760–1765 CrossRefGoogle Scholar
  2. 2.
    Pope SB (2004). Ten questions concerning the large-eddy simulation of turbulent flows. New J Phys 6: 1–24 CrossRefGoogle Scholar
  3. 3.
    Meyers J, Geurts BJ and Baelmans M (2005). Optimality of the dynamic procedure for large-eddy simulations. Phys Fluids 17: 045108 CrossRefGoogle Scholar
  4. 4.
    Porté-Agel F, Meneveau C and Parlange MB (2000). A scale-dependent dynamic model for large-eddy simulation: application to a neutral atmospheric boundary layer. J Fluid Mech 415: 261–284 CrossRefGoogle Scholar
  5. 5.
    Porté-Agel F (2004). A scale-dependent dynamic model for scalar transport in LES of the atmospheric boundary layer. Boundary-Layer Meteorol 112: 81–105 CrossRefGoogle Scholar
  6. 6.
    Basu S and Porté-Agel F (2006). Large-eddy simulation of stably stratified atmospheric boundary layer turbulence: a scale-dependent dynamic modeling approach. J Atmos Sci 63: 2074–2091 CrossRefGoogle Scholar
  7. 7.
    Basu S, Porté-Agel F, Foufoula-Georgiou E, Vinuesa J-F, Pahlow M (2006) Revisiting the local scaling hypothesis in stably stratified atmospheric boundary layer turbulence: an integration of field and laboratory measurements with large-eddy simulations. Boundary-Layer Meteorol DOI: 10.1007/s10546-005-9036-2Google Scholar
  8. 8.
    Bou-zeid E, Meneveau C and Parlange M (2006). A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys Fluids 17: 025105 CrossRefGoogle Scholar
  9. 9.
    Stoll R and Porté-Agel F (2006). Dynamic subgrid-scale models for momentum and scalar fluxes in large-eddy simulations of neutrally stratified atmospheric boundary layers over heterogeneous terrain. Water Resour Res 42: W01409 CrossRefGoogle Scholar
  10. 10.
    Smagorinsky J (1963). General circulation experiments with the primitive equations. Mon Weath Rev 91: 99–164 CrossRefGoogle Scholar
  11. 11.
    Wong V and Lilly D (1994). A comparison of two dynamic subgrid scale closure methods for turbulent thermal convection. Phys Fluids 6: 1016–1023 CrossRefGoogle Scholar
  12. 12.
    Chow FK, Street RL, Xue M and Ferziger JH (2005). Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J Atmos Sci 62: 2058–2077 CrossRefGoogle Scholar
  13. 13.
    Lilly DK (1967) The representation of small-scale turbulence in numerical simulation experiments. In: Proc. IBM scientific computing symp. on environmental sciences, Yorktown Heights, NY, IBM DP Division, pp 195–210Google Scholar
  14. 14.
    Andrén A, Brown AR, Graf J, Mason PJ, Moeng C-H, Nieuwstadt FTM and Schumann U (1994). Large-eddy simulation of a neutrally stratified boundary layer: a comparison of four codes. Quart J Roy Meteorol Soc 120: 1457–1484 CrossRefGoogle Scholar
  15. 15.
    Brown AR, Derbyshire SH and Mason PJ (1994). Large-eddy simulation of stable atmospheric boundary layers with a revised stochastic subgrid model. Quart J Roy Meteorol Soc 120: 1485–1512 CrossRefGoogle Scholar
  16. 16.
    Kosović B (1997). Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layers. J Fluid Mech 336: 151–182 CrossRefGoogle Scholar
  17. 17.
    Mason PJ and Thomson DJ (1992). Stochastic backscatter in large-eddy simulations of boundary layers. J Fluid Mech 242: 51–78 CrossRefGoogle Scholar
  18. 18.
    Sullivan PP, McWilliams JC and Moeng C-H (1994). A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol 71: 247–276 CrossRefGoogle Scholar
  19. 19.
    Esau I (2004). Simulation of Ekman boundary layers by large eddy model with dynamic mixed subfilter closure. Environ Fluid Mech 4: 273–303 CrossRefGoogle Scholar
  20. 20.
    Businger JA, Wyngaard JC, Izumi Y and Bradley EF (1971). Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28: 181–189 CrossRefGoogle Scholar
  21. 21.
    Kader BA and Yaglom AM (1990). Mean field and fluctuation moments in unstably stratified turbulent boundary layers. J Fluid Mech 212: 637–662 CrossRefGoogle Scholar
  22. 22.
    Warhaft Z (2000). Passive scalars in turbulent flows. Annu Rev Fluid Mech 32: 203–240 CrossRefGoogle Scholar
  23. 23.
    Shraiman BI and Siggia ED (2000). Scalar turbulence. Nature 405: 639–646 CrossRefGoogle Scholar
  24. 24.
    Mason P (1989). Large-eddy simulation of the convective atmospheric boundary layer. J Atmos Sci 46: 1492–1516 CrossRefGoogle Scholar
  25. 25.
    Grant ALM (1992). The structure of turbulence in the near-neutral atmospheric boundary layer. J Atmos Sci 49: 226–239 CrossRefGoogle Scholar
  26. 26.
    Grant ALM (1986). Observations of boundary layer structure made during the KONTUR experiment. Quart J Roy Meteorol Soc 112: 825–841 CrossRefGoogle Scholar
  27. 27.
    Porté-Agel F, Parlange MB, Meneveau C and Eichinger WE (2001). A priori field study of the subgrid-scale heat fluxes and dissipation in the atmospheric surface layer. J Atmos Sci 58: 2673–2698 CrossRefGoogle Scholar
  28. 28.
    Mason PJ and Thomson DJ (1987). Large-eddy simulations of the neutral-static-stability planetary boundary layer. Quart J Roy Meteorol Soc 113: 413–443 CrossRefGoogle Scholar
  29. 29.
    Moeng C-H and Sullivan PP (1994). A comparison of shear- and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51: 999–1022 CrossRefGoogle Scholar
  30. 30.
    Ding F, Arya SP and Lin Y-L (2001). Large-eddy simulations of the atmospheric boundary layer using a new subgrid-scale model. Part I: slightly unstable and neutral cases. Environ Fluid Mech 1: 29–47 Google Scholar
  31. 31.
    Carlotti P (2002). Two-point properties of atmospheric turbulence very close to the ground: comparison of a high resolution LES with theoretical models. Boundary-Layer Meteorol 104: 381–410 CrossRefGoogle Scholar
  32. 32.
    Hutchins N and Marusic I (2007). Evidence of very long meandering features in the logarithmic region of turbulence boundary layers. J Fluid Mech 579: 1–28 CrossRefGoogle Scholar
  33. 33.
    Sullivan PP, Horst TW, Lenschow DH, Moeng C-H and Weil JC (2003). Structure of subfilter-scale fluxes in the atmospheric surface layer with application to large-eddy simulation modelling. J Fluid Mech 482: 101–139 CrossRefGoogle Scholar
  34. 34.
    Ghosal S, Lund TS, Moin P and Akselvoll K (1995). A dynamic localization model for large eddy simulation of turbulent flows. J Fluid Mech 286: 229–255 CrossRefGoogle Scholar
  35. 35.
    Kim W-K and Menon S (1999). An unsteady incompressible Navier-Stokes solver for large eddy simulation of turbulent flows. Int J Numer Meth Fluids 31: 983–1017 CrossRefGoogle Scholar
  36. 36.
    Lilly DK (1992). A proposed modification of the Germano subgridscale closure method. Phys Fluids A 4: 633–635 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • William C. Anderson
    • 1
  • Sukanta Basu
    • 2
  • Chris W. Letchford
    • 1
  1. 1.Wind Science and Engineering Research CenterTexas Tech UniversityLubbockUSA
  2. 2.Atmospheric Science Group, Department of GeosciencesTexas Tech UniversityLubbockUSA

Personalised recommendations