Advertisement

Environmental Fluid Mechanics

, Volume 5, Issue 4, pp 325–340 | Cite as

A Quantitative Analysis of Energy Dissipation among Three Typical Air Entrainment Phenomena

  • Ashabul Hoque
  • Shin-Ichi Aoki
Article

Abstract

This study investigates energy dissipation due to air bubble entrainment for three typical phenomena; a hydraulic jump, a 2-D vertical plunging jet and a vertical circular plunging jet into water. A simple model is presented here which enables to estimate the energy transformation and dissipation achieved by air bubbles quantitatively for three above phenomena. The average rate of energy dissipation by air bubbles obtained from the experimental data are 25%, 1.4%, and 2.15% with respect to total energy loss for the hydraulic jump, 2-D vertical plunging jet and vertical circular plunging jet, respectively.

Key words

Breaking wave energy dissipation plunging liquid jet potential energy void-fraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bin, A.K. 1993Gas entrainment by plunging liquid jetsChem. Eng. Science4835853630CrossRefGoogle Scholar
  2. 2.
    Bonetto, F., Lahey, R.T. 1993An experimental study on air carry under due to a plunging liquid jetInt. J. Multiphase flow19281294CrossRefGoogle Scholar
  3. 3.
    Chanson, H., Toombes, L. 2002Experimental study of gas–liquid interfacial properties in a stepped cascade flowEnviron. Fluid Mech.2241263CrossRefGoogle Scholar
  4. 4.
    Chanson, H., Brattberg, T. 2000Experimental study of the air–water shear flow in a hydraulic jumpInt. J. Multiphase Flow26583607CrossRefGoogle Scholar
  5. 5.
    Chanson, H. 1997Air Bubble Entrainment in Free-surface Turbulent Shear FlowAcademic pressLondon, U.K.Google Scholar
  6. 6.
    Chanson, H., Lee, J.F. 1997Plunging jet characteristics of plunging breakersCoastal Eng.31125141CrossRefGoogle Scholar
  7. 7.
    Cummings, .D., Chanson, H. 1997Air entrainment in the developing flow region of plunging jets-part 2: experimentalJ. Fluids Eng.119603608Google Scholar
  8. 8.
    Evans, G.M., Jameson, G.J., Atkinson, B.W. 1992Prediction of the bubble size generated by a plunging liquid jet bubble columnChem. Eng. Sci.4732653272CrossRefGoogle Scholar
  9. 9.
    Fredsoe, J., Deigaard, R. 1992Mechanics of Coastal Sediment TransportWorld scientific publSingaporeGoogle Scholar
  10. 10.
    Führböter, A.: 1970, Air entrainment and energy dissipation in breakers. Proc. ICCE 391–398.Google Scholar
  11. 11.
    Koga, M. 1982Bubble entrainment in breaking wind wavesTellus34481489Google Scholar
  12. 12.
    Lamarre, E., Melville, W.K. 1991Air entrainment and dissipation in breaking wavesNature351469472CrossRefGoogle Scholar
  13. 13.
    Mudde, R.F., Saito, T. 2001Hydrodynamical similarities between bubble column and bubbly pipe flowJ. Fluid Mech.437203228CrossRefGoogle Scholar
  14. 14.
    Peregrine, D.H. and Svendsen, I.A. 1978 Spilling breakers, bores and hydraulic jumps, In: Proceedings f 16th International Conferance Coastal Engineering ASCE 1, 540–550.Google Scholar
  15. 15.
    Wood, I.R. 1991Air Entrainment in Free-surface FlowsBalkema publ.NetherlandsGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of RajshahiRajshahiBangladesh
  2. 2.Department of Architecture and Civil EngineeringToyohashi University of TechnologyJapan

Personalised recommendations