Skip to main content

Advertisement

Log in

A Quantitative Analysis of Energy Dissipation among Three Typical Air Entrainment Phenomena

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

This study investigates energy dissipation due to air bubble entrainment for three typical phenomena; a hydraulic jump, a 2-D vertical plunging jet and a vertical circular plunging jet into water. A simple model is presented here which enables to estimate the energy transformation and dissipation achieved by air bubbles quantitatively for three above phenomena. The average rate of energy dissipation by air bubbles obtained from the experimental data are 25%, 1.4%, and 2.15% with respect to total energy loss for the hydraulic jump, 2-D vertical plunging jet and vertical circular plunging jet, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.K. Bin (1993) ArticleTitleGas entrainment by plunging liquid jets Chem. Eng. Science 48 3585–3630 Occurrence Handle10.1016/0009-2509(93)81019-R

    Article  Google Scholar 

  2. F. Bonetto R.T. Lahey (1993) ArticleTitleAn experimental study on air carry under due to a plunging liquid jet Int. J. Multiphase flow 19 281–294 Occurrence Handle10.1016/0301-9322(93)90003-D

    Article  Google Scholar 

  3. H. Chanson L. Toombes (2002) ArticleTitleExperimental study of gas–liquid interfacial properties in a stepped cascade flow Environ. Fluid Mech. 2 241–263 Occurrence Handle10.1023/A:1019884101405

    Article  Google Scholar 

  4. H. Chanson T. Brattberg (2000) ArticleTitleExperimental study of the air–water shear flow in a hydraulic jump Int. J. Multiphase Flow 26 583–607 Occurrence Handle10.1016/S0301-9322(99)00016-6

    Article  Google Scholar 

  5. H. Chanson (1997) Air Bubble Entrainment in Free-surface Turbulent Shear Flow Academic press London, U.K.

    Google Scholar 

  6. H. Chanson J.F. Lee (1997) ArticleTitlePlunging jet characteristics of plunging breakers Coastal Eng. 31 125–141 Occurrence Handle10.1016/S0378-3839(96)00056-7

    Article  Google Scholar 

  7. .D. Cummings H. Chanson (1997) ArticleTitleAir entrainment in the developing flow region of plunging jets-part 2: experimental J. Fluids Eng. 119 603–608

    Google Scholar 

  8. G.M. Evans G.J. Jameson B.W. Atkinson (1992) ArticleTitlePrediction of the bubble size generated by a plunging liquid jet bubble column Chem. Eng. Sci. 47 3265–3272 Occurrence Handle10.1016/0009-2509(92)85034-9

    Article  Google Scholar 

  9. J. Fredsoe R. Deigaard (1992) Mechanics of Coastal Sediment Transport World scientific publ Singapore

    Google Scholar 

  10. Führböter, A.: 1970, Air entrainment and energy dissipation in breakers. Proc. ICCE 391–398.

  11. M. Koga (1982) ArticleTitleBubble entrainment in breaking wind waves Tellus 34 481–489

    Google Scholar 

  12. E. Lamarre W.K. Melville (1991) ArticleTitleAir entrainment and dissipation in breaking waves Nature 351 469–472 Occurrence Handle10.1038/351469a0

    Article  Google Scholar 

  13. R.F. Mudde T. Saito (2001) ArticleTitleHydrodynamical similarities between bubble column and bubbly pipe flow J. Fluid Mech. 437 203–228 Occurrence Handle10.1017/S0022112001004335

    Article  Google Scholar 

  14. Peregrine, D.H. and Svendsen, I.A. 1978 Spilling breakers, bores and hydraulic jumps, In: Proceedings f 16th International Conferance Coastal Engineering ASCE 1, 540–550.

  15. I.R. Wood (1991) Air Entrainment in Free-surface Flows Balkema publ. Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashabul Hoque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoque, A., Aoki, SI. A Quantitative Analysis of Energy Dissipation among Three Typical Air Entrainment Phenomena. Environ Fluid Mech 5, 325–340 (2005). https://doi.org/10.1007/s10652-005-3258-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-005-3258-1

Key words

Navigation