Skip to main content
Log in

Analyzing longitudinal circular data by projected normal models: a semi-parametric approach based on finite mixture models

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

The analysis of circular data has been recently the focus of a wide range of literature, with the general objective of providing reliable parameter estimates in the presence of heterogeneity and/or dependence among observations under a longitudinal setting. In this paper, we extend the variance component model approach to the analysis of longitudinal circular data, defining a mixed effects model for radial projections onto the circle and introducing dependence between projections through a set of correlated random coefficients. Estimation is carried out by numerical integration through an expectation-maximization algorithm without parametric assumptions upon the random coefficients distribution. The resulting model is a finite mixture of projected normal distributions. A simulation study has been carried out to investigate the behavior of the proposed model in a series of empirical situations. The proposed model is computationally parsimonious and, when applied to a real dataset on animal orientation, produces novel results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aitkin MA (1996) Empirical Bayes shrinkage using posterior random effect means from nonparametric maximum likelihood estimation in general random effect models. In: Statistical Modelling: Proceedings of the 11th IWSM, 87–94

  • Aitkin MA (1999) A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55:117–128

    Article  CAS  PubMed  Google Scholar 

  • Alfó M, Maruotti A, Trovato G (2011) A finite mixture model for multivariate counts under endogenous selectivity. Stat Comput 21:185–202

    Article  Google Scholar 

  • Artes R, Jorgensen B (2000) Longitudinal data estimating equations for dispersion models. Scand J Stat 27:321–334

    Article  Google Scholar 

  • Artes R, Paula GA, Ranvaud R (2000) Analysis of circular longitudinal data based on generalized estimating equations. Aust N Z J Stat 42:347–358

    Article  Google Scholar 

  • Biernacki C, Celeux G, Govaert G (2003) Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models. Comput Stat Data Anal 41:561–575

    Article  Google Scholar 

  • Böhning D (1995) A review of reliable algorithms for the semi-parametric maximum likelihood estimator of a mixture distribution. J Stat Plan Inference 47:5–28

    Article  Google Scholar 

  • Bulla J, Lagona F, Maruotti A, Picone M (2012) A multivariate hidden Markov model for the identification of sea regimes from incomplete skewed and circular time series. J Agric Biol Environ Stat 17:544–567

    Article  Google Scholar 

  • D’Elia A (2001) A statistical model for orientation mechanism. Stat Methods Appl 10:157–174

    Article  Google Scholar 

  • Di Marzio M, Panzera A, Taylor CC (2012) Smooth estimation of circular cumulative distribution functions and quantiles. J Nonparametr Stat 24:935–949

    Article  Google Scholar 

  • Di Marzio M, Panzera A, Taylor CC (2014) Nonparametric regression for spherical data. J Am Stat Ass 109:748–763

    Article  Google Scholar 

  • Downs TD, Mardia KV (2002) Circular regression. Biometrika 89:683–697

    Article  Google Scholar 

  • Ferreira JT, Steel M (2006) A constructive representation of univariate skewed distributions. J Am Stat Assoc 101:823–829

    Article  CAS  Google Scholar 

  • Fisher NI (1993) Statistical Analysis Circular Data. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fisher NI, Lee AJ (1992) Regression models for angular response. Biometrics 48:665–677

    Article  Google Scholar 

  • Fitzmaurice G, Davidian M, Verbeke G, Molenberghs G (2008) Longitudinal data analysis. Chapman & Hall, Boca Raton, FL

    Google Scholar 

  • Heckman J, Singer B (1984) A method for minimizing the impact of distributional assumptions in econometric models of duration. Econometrica 52:271–320

    Article  Google Scholar 

  • Ingrassia S, Rocci R (2011) Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints. Comput Stat Data Anal 55:1715–1725

    Article  Google Scholar 

  • Jammalamadaka RA, SenGupta A (2001) Topics in circular statistics. World Scientific, Singapore

    Google Scholar 

  • Johnson RA, Wehrly TE (1978) Some angular-linear distributions and related regression models. J Am Statl Assoc 73:602–606

    Article  Google Scholar 

  • Jona-Lasinio G, Gelfand A, Jona-Lasinio M (2012) Spatial analysis of wave direction data using wrapped Gaussian processes. Ann Appl Stat 6:1478–1498

    Article  Google Scholar 

  • Laird NM (1978) Nonparametric maximum likelihood estimation of a mixing distribution. J Am Statl Assoc 73:805–811

    Article  Google Scholar 

  • Lagona F (2015) Regression analysis of correlated circular data based on the multivariate von Mises distribution. Environ Ecol Stat, to appear

  • Lagona F, Picone M (2013) Maximum likelihood estimation of bivariate circular hidden Markov models from incomplete data. J Stat Comput Simul 83:1223–1237

    Article  Google Scholar 

  • Lagona F, Picone M (2012) Model-based clustering of multivariate skew data with circular components and missing values. J Appl Stat 39:927–945

    Article  Google Scholar 

  • Lee A (2010) Circular data. Wiley Interdiscip Rev 2:477–486

    Article  Google Scholar 

  • Mardia KV, Jupp PE (2000) Directional statistics. Wiley, USA

    Google Scholar 

  • Martinez-Zarzoso I, Maruotti A (2013) The environmental Kuznets curve: functional form, time-varying heterogeneity and outliers in a panel setting. Environmetrics 24:461–475

    Article  Google Scholar 

  • Martinez-Zarzoso I, Maruotti A (2011) The impact of urbanization on CO2 emissions: evidence from developing countries. Ecol Econ 70:1344–1353

    Article  Google Scholar 

  • Mastrantonio G, Jona-Lasinio G, Maruotti A (2015) Bayesian hidden Markov modelling using circular-linear general projected normal distribution. Environmetrics 26:145–158

    Article  Google Scholar 

  • McLachlan G, Peel D (1999) The EMMIX algorithm for the fitting of Normal and t-components. J Stat Softw 4:2

    Article  Google Scholar 

  • Nunez-Antonio G, Gutierrez-Pena E (2014) A Bayesian model for longitudinal circular data based on the projected normal distribution. Comput Stat Data Anal 71:506–519

    Article  Google Scholar 

  • Presnell B, Morrison SP, Littell RC (1998) Projected multivariate linear model for directional data. J Am Statl Assoc 93:1068–1077

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. URL http://www.R-project.org

  • Rivest LP (1997) A decentred predictor for circular-circular regression. Biometrika 84:717–726

    Article  Google Scholar 

  • Sarma Y, Jammalamadaka S (1993) Circular regression. Statistical science and data analysis. In: Proceeding of the thrid Pacific area statistical conference: 109–128. VSP: Utrecht, Netherlands

  • Song PXK (2007) Correlated data analysis. Springer, Berlin

    Google Scholar 

  • Teicher H (1967) Identifiability of mixtures of product measures. Ann Math Stat 38:1300–1302

    Article  Google Scholar 

  • Verbeke G, Fieuws S, Molenberhs G, Davidian M (2014) The analysis of multivariate longitudinal data: a review. Stat Methods Med Res 23:42–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F (2013) Space and space-time modeling of directional data. Ph.D Thesis, Department of Statistical Science in the Graduate School of Duke University

  • Wang F, Gelfand A (2013) Directional data analysis under the general projected normal distribution. Stat Methodol 10:113–127

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Gelfand A (2014) Modeling space and space-time directional data using projected Gaussian processes. J Am Stat Assoc 109:1565–1580

    Article  CAS  Google Scholar 

  • Wang F, Gelfand A, Jona-Lasinio G (2015) Joint spatio-temporal analysis of a linear and a directional variable: space-time modeling of wave heights and wave directions in the Adriatic Sea. Stat Sinica 25:25–39

    Google Scholar 

  • Yakowitz S, Spragins J (1968) On the identifiability of finite mixtures. Ann Math Stat 39:209–214

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the referees for the precise review of my article and the very useful comments. They have been precious in order to improve the quality of the paper. The author is grateful to Gianluca Mastrantonio for his comments on a draft version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonello Maruotti.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Handling Editor: Pierre Dutilleul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruotti, A. Analyzing longitudinal circular data by projected normal models: a semi-parametric approach based on finite mixture models. Environ Ecol Stat 23, 257–277 (2016). https://doi.org/10.1007/s10651-015-0338-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-015-0338-3

Keywords

Navigation