Skip to main content

Advertisement

Log in

Inhomogeneous evolutionary MCMC for Bayesian optimal sequential environmental monitoring

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

We develop a novel computational framework for Bayesian optimal sequential network design for environmental monitoring. This computational framework is based on inhomogeneous evolutionary Markov chain Monte Carlo, which combines ideas of genetic or evolutionary algorithms, Markov chain Monte Carlo, and inhomogenous Markov chains. Our framework allows optimality criteria with general utility functions that may include competing objectives, such as for example minimization of costs, minimization of the distance between true and estimated functions, and minimization of the prediction error. We illustrate our novel methodology with two applications to design of monitoring networks for ozone. The first application considers a one-time reduction of an existing network. The second application considers the design of a dynamic monitoring network where at each time point only a portion of the nodes of the network provide real time data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alves MB, Gamerman D, Ferreira MAR (2010) Transfer functions in dynamic generalized linear models. Stat Model 10:03–40

    Article  Google Scholar 

  • Amzal B, Bois FY, Parent E, Robert CP (2006) Bayesian-optimal design via interacting particle systems. J Am Stat Assoc 101:773–785

    Article  CAS  Google Scholar 

  • Berger J (1985) Statistical decision theory and Bayesian analysis. Springer, New York

    Book  Google Scholar 

  • Boer E, Dekkers A, Stein A (2002) Optimization of a monitoring network for sulfur dioxide. J Environ Qual 31(1):121–128

    Article  CAS  PubMed  Google Scholar 

  • Carter CK, Kohn R (1994) On Gibbs sampling for state space models. Biometrika 81(3):541–553

    Article  Google Scholar 

  • Caselton WF, Husain T (1980) Hydrologic networks: information transmission. J Water Resour Plan Manag Div 106(2):503–520

    Google Scholar 

  • Caselton WF, Zidek JV (1984) Optimal monitoring network designs. Stat Prob Lett 2(4):223–227

    Article  Google Scholar 

  • Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Stat Sci 10:273–304

    Article  Google Scholar 

  • Correia AW, Pope CA III, Dockery DW, Wang Y, Ezzati M, Dominici F (2013) Effect of air pollution control on life expectancy in the United States: an analysis of 545 US counties for the period from 2000 to 2007. Epidemiology 24(1):23–31

    Article  PubMed Central  PubMed  Google Scholar 

  • DeGroot M (1970) Optimal statistical decisions. McGraw Hill, New York

    Google Scholar 

  • Diggle P, Lophaven S (2006) Bayesian geostatistical design. Scand J Stat 33(1):53–64

    Article  Google Scholar 

  • Dominici F, Peng RD, Zeger SL, White RH, Samet JM (2007) Particulate air pollution and mortality in the United States: did the risks change from 1987 to 2000? Am J Epidemiol 166(8):880–888

    Article  PubMed  Google Scholar 

  • Doucet A, de Freitas N, Gordon N (2001) Sequential Monte Carlo methods in practice. Springer, New York

    Book  Google Scholar 

  • Drugan M, Thierens D (2004) Evolutionary Markov chain Monte Carlo. In: Liardet P, Collet P, Fonlupt C, Luton E, Shoenauer M (eds) Artificial evolution: 6th international conference, evolution artificielle, EA, 2003, Lecture Notes in Computer Science. Springer, Berlin, pp 63–76

  • Ferreira MAR, Sanyal N (2014) Bayesian optimal sequential design for nonparametric regression via inhomogeneous evolutionary MCMC. Stat Methodol 18:131–141

    Article  Google Scholar 

  • Frühwirth-Schnatter S (1994) Data augmentation and dynamic linear models. J Time Ser Anal 15:183–202

    Article  Google Scholar 

  • Gamerman D, Lopes HF (2006) Markov chain Monte Carlo: stochastic simulation for Bayesian inference, 2nd edn. Chapman and Hall/CRC, Boca Raton

    Google Scholar 

  • Higdon DM (2002) Space and space–time modeling using process convolutions. In: Anderson CW, Barnett V, Chatwin PC, El-Shaarawi AH (eds) Quantitative methods for current environmental issues. Springer, New York, pp 37–54

    Chapter  Google Scholar 

  • Huerta G, Sansó B, Stroud JR (2004) A spatiotemporal model for Mexico City ozone levels. J R Stat Soc: Ser C 53(2):231–248

    Article  Google Scholar 

  • Jacquier E, Johannes M, Polson N (2007) MCMC maximum likelihood for latent state models. J Econom 127:615–640

    Article  Google Scholar 

  • Johansen AM, Doucet A, Davy M (2008) Particle methods for maximum likelihood estimation in latent variable models. Stat Comput 18:47–57

    Article  Google Scholar 

  • Li W, Han J (2010) Dynamic wireless sensor network parameters optimization adapting different node mobility. In: Proceedings of the IEEE aerospace conference, 2010, paper # 1170. IEEE

  • Liu JS (2004) Monte Carlo strategies in scientific computing. Springer, New York

    Book  Google Scholar 

  • Müller P, Sansó B, Iorio MD (2004) Optimal Bayesian design by inhomogeneous Markov chain simulation. J Am Stat Assoc 99:788–798

    Article  Google Scholar 

  • Rappold AG, Gelfand AE, Holland DM (2008) Modelling mercury deposition through latent space–time processes. J R Stat Soc: Ser C 57(2):187–205

    Article  Google Scholar 

  • Robert CP, Casella G (2004) Monte Carlo statistical methods, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Ruiz-Cárdenas R, Ferreira MAR, Schmidt AM (2010) Stochastic search algorithms for optimal monitoring network designs. Environmetrics 21:102–112

    Google Scholar 

  • Ruiz-Cárdenas R, Ferreira MAR, Schmidt AM (2012) Evolutionary Markov chain Monte Carlo algorithms for optimal monitoring network designs. Stat Methodol 9:185–194

    Article  Google Scholar 

  • Sinha A, Chandrakasan A (2001) Dynamic power management in wireless sensor networks. Des Test Comput IEEE 18(2):62–74

    Article  Google Scholar 

  • Song W-Z, Huang R, Xu M, Ma A, Shirazi B, LaHusen R (2009) Air-dropped sensor network for real-time high-fidelity volcano monitoring. In: Proceedings of the 7th international conference on mobile systems, applications, and services. ACM, pp 305–318

  • Trujillo-Ventura A, Hugh Ellis J (1991) Multiobjective air pollution monitoring network design. Atmos Environ A Gen Top 25(2):469–479

    Article  Google Scholar 

  • West M, Harrison J (1997) Bayesian forecasting and dynamic models, 2nd edn. Springer, New York

    Google Scholar 

  • Wikle CK, Royle JA (2005) Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data. Environmetrics 16:507–522

    Article  Google Scholar 

  • Zidek JV, Le ND, Liu Z (2012) Combining data and simulated data for space–time fields: application to ozone. Environ Ecol Stat 19(1):37–56

    Article  Google Scholar 

  • Zidek JV, Sun W, Le ND (2000) Designing and integrating composite networks for monitoring multivariate Gaussian pollution fields. J R Stat Soc: Ser C 49(1):63–79

    Article  Google Scholar 

Download references

Acknowledgments

The work of Ferreira was supported in part by National Science Foundation Grant DMS-0907064. Part of this research was performed while Ferreira was visiting the Statistical and Applied Mathematical Sciences Institute (SAMSI). We gratefully acknowledge the constructive comments and suggestions made by two anonymous referees and the Associate Editor that led to a substantially improved article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. R. Ferreira.

Additional information

Handling Editor: Pierre Dutilleul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M.A.R. Inhomogeneous evolutionary MCMC for Bayesian optimal sequential environmental monitoring. Environ Ecol Stat 22, 705–724 (2015). https://doi.org/10.1007/s10651-015-0315-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-015-0315-x

Keywords

Navigation