Skip to main content

Advertisement

Log in

Improved statistical downscaling models based on canonical correlation analysis, for generating temperature scenarios over Greece

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

This study attempts to improve upon statistical downscaling (Sd) models based on the classical approach which uses canonical correlation analysis, in order to generate temperature scenarios over Greece. Considering the long-term trends of the predictor variables (1,000–500 hPa thickness field geopotential heights—using NCEP data) and the predictand variables (observed mean maximum summer temperatures over Greece), a new Sd model is constructed. Regression models using generalized least square estimators are developed in order to eliminate the trends within the time series. The advantages of the suggested method compared to the classical method are quantified in terms of a number of distinct performance criteria, e.g., Mean squared error which is the basic criterion of the estimated downscaled values relative to the observed. Finally, the suggested Sd models are used to evaluate the effects of a future climate scenario (IPCC-SRES: A2) on mean maximum summer temperatures over Greece. The results from the climate projection indicate a temperature increase for the period 2070–2100 which is smaller than the corresponding increase from the classical approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandersson H (1986) A homogeneity test applied to precipitation data. J Clim 6: 661–675

    Article  Google Scholar 

  • Barnett T, Preisendorfer R (1987) Origin and levels of monthly and seasonal forecast skill for united states surface air temperatures determined by canonical correlation analysis. Mon Weather Rev 115: 1825–1850

    Article  Google Scholar 

  • Benestad RE, Hanssen-Bauer I, Chen D (2008) Empirical-statistical downscaling. World Scientific Publishing Company, Singapore

    Book  Google Scholar 

  • Benestad RE (2001) A comparison between two empirical downscaling strategies. Int J Climatol 21(13):1645–1668. doi:10.1002/joc.703

    Google Scholar 

  • Brockwell PJ, Davis RA (2002) Introduction to time series and forecasting, 2nd edn. Springer, NY

    Book  Google Scholar 

  • Burkhardt U (1999) Alpine precipitation in a tripled CO2 climate. Tellus A 51: 289–903

    Article  Google Scholar 

  • Busuioc A, Tomozeiu R, Cacciamani C (2008) Statistical downscaling model based on canonical correlation analysis for winter extreme precipitation events in the Emilia-Romagna region. Int J Climatol 28:449–464. doi:10.1002/joc

    Google Scholar 

  • Busuioc A, Chen D, Hellström C (2001) Performance of statistical downscaling models in GCM validation and regional climate change estimates: application for Swedish precipitation. Int J Climatol 21: 557–578

    Article  Google Scholar 

  • Chu J, Xia J, Xu CU, Singh V (2010) Statistical downscaling of daily mean temperature, pan evaporation and precipitation for climate change scenarios in Haihe River, China. Theor Appl Climatol 99(1): 149–161

    Article  Google Scholar 

  • Cubasch U, Meehl GA, Boer GJ, Stouffern MD, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of Future Climate Change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Linden PJ, Dai X, Maskell K, Johnson CAClimate change 2001: the scientific basis. Contribution of working Group I to the third assessment report of international panel on climate change. Cambridge University Press, Cambridge

  • Draper NR, Smith H (1998) Applied regression analysis, 3rd edn. Wiley, NY

    Google Scholar 

  • Eaton ML, Perlman MD (1973) The non-singularity of generalized sample covariance matrices. Ann Stat 1(4): 710–717

    Article  Google Scholar 

  • Everitt B (2005) An R and S-Plus companion to multivariate analysis. Springer, London. doi:10.10O7/b138954

  • Flocas HA, Tolika K, Anagnostopoulou Chr, Patrikas I, Maheras P, Vafiadis M (2005) Evaluation of maximun and minimum temperature of NCEP-NCAR reanalysis data over Greece. Theor Appl Climatol 80:49–65. doi:10.1007/s00704-004-0078-z

  • Fox J (2002) An R and S-plus companion to applied regression. Sage Publications, USA

    Google Scholar 

  • Gilbert RO (1987) Statistical methods for environmental pollution monitoring. Van Nostrand Reinhold, NY

    Google Scholar 

  • Giorgi F, Hewitson B, Christensen J, Hulme M, Von Storch H, Whetto P, Jones R, Mearns L, Fu C (2001) Regional climate information-evaluation and projections. Chapter 10, IPCC 2001

  • Hair JF Jr, Anderson RE, Tathamb RL, Black WC (1998) Multivariate data analysis, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hellström C, Chen D, Achberger C, Räisänen J (2001) Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation. Clim Res 19: 45–55

    Article  Google Scholar 

  • Hollander M, Wolfe DA (1999) Non parametric statistical methods, 2nd edn. Wiley, NY

    Google Scholar 

  • Huth R (2004) Sensitivity of local daily temperature change estimates to the selection of downscaling models and predictors. J Clim 17:640–652. doi:10.1175/1520-0442(2004)017<0640:SOLDTC>2.0.CO;2

    Google Scholar 

  • Huth R (2002) Statistical downscaling of daily temperature in Central Europe. J Clim 15:1731–1742. doi:10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2

    Google Scholar 

  • Huth R (1999) Statistical downscaling in Central Europe: evaluation of methods and potential predictors. Clim Res 13: 91–101

    Article  Google Scholar 

  • Huth R (1997) Potential of continental-scale circulation for the determination of local daily surface variables. Theor Appl Climatol 56: 165–186

    Article  Google Scholar 

  • IPCC (2001) Climate change (2001): the scientific basis. In: Houghton JT et al (eds) Contribution of working group i to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis, 5th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Jones R, Murphy J, Hassel D, Taylor R (2001) Ensemble mean changes in a simulation of the European climate of 2071–2100 using the New Hadley Centre regional modeling system HadAM3H /HadRM3. Hadley Centre Meteorological Office, Bracknell

    Google Scholar 

  • Kalnay E, Kanamitsou M, Kistler R, Collins W, Deaven D, Gandil L, Irebell M, Saha S, White G, Woolen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Huggins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77: 437–471

    Article  Google Scholar 

  • Kapsomenakis I, Zanis P, Douvis K, Filandras C, Nikolakis D, Zerefos C, Tselioudis G (2009) Future projections of climate change for Greece based on regional and Global climate models. In: Proccedings of the 9th COMECAP, Thessaloniki, Greece, pp 377–384

  • Kjellström E, Bärring L, Gollvik S, Hansson U, Jones C, Samuelsson P, Rummukainen M, Ullersting A, Willèn U, Wyser K (2006) A 140-year simulation of European climate with the new version of the Rossby centre regional atmospheric climate model (RCA3). RMK 108. SMHI, Norrkoping

  • Kostopoulou E, Giannakopoulos C, Anagnostopoulou C, Tolika K, Maheras P, Vafiadis M, Founda D (2007) Simulating maximum and minimum temperatures over Greece: a comparison of three downscaling techniques. Theor Appl Clim 90:65–82. doi:10.1007/s00704-006-0269-x

    Google Scholar 

  • Kyselý J (2002) Comparisons of extremes in GCM-simulated downscaled and observed central-European temperature series. Clim Res 20: 211–222

    Article  Google Scholar 

  • Lee J, Lund R (2004) Revisiting simple linear regression with autocorrelated errors. Biometrika 91(1): 240–245

    Article  Google Scholar 

  • Lutz K, Jacobeit J, Phillip A, Seubert S, Kunstmann H, Laux P (2011) Comparison and evaluation of statistical downscaling techniques for station-based precipitation in the Middle-East. Int J Climatol. doi:10.1002/joc.2381

  • Maheras P, Tolika K, Roussi E, Kolyva-Machera F (2010) Scénarios de changements des températures extrèmes en Grèce pou la fin du XXIÈME siècle: simulations futures par un modèle du projet “ENSEBLES”. In: Proccedings of the 23ième Colloque de l’ Association Internationale de Climatologie, Rennes 2010, pp 361–366

  • Maheras P, Flocas H, Tolika K, Anagnostopoulou C, Vafiadis M (2006) Circulation types and extreme temperatures changes in Greece. Clim Res 30: 161–174

    Article  Google Scholar 

  • Maheras P, Anagnostopoulou C (2003) Circulation types and their influence on the interannual variability and precipitation changes in Greece. In: Bolle HJMediterranean climate: variability and trends. Springer, Berlin, pp 215–239

  • Millard PSt, Neerchal NK (2000) Environmental statistics with S-Plus. CRS Press LLC, NW Corporate Blvd

    Book  Google Scholar 

  • Neykov N, Neytshev P, Zucchini W, Hristov H (2011) Linking atmospheric circulation to daily precipitation patterns over the territory of Bulgaria. Environ Ecol Stat. doi:10.1007/s10651-011-0185-9

  • Nicholas RE, Battisti DS (2012) Empirical downscaling of high-resolution regional precipitation from large-scale reanalysis fields. J Appl Meteor Climatol 51:100–114. doi:10.1175/JAMC-D-11-04.1

    Google Scholar 

  • Quadrelli R, Wallace JM (2004) A simplified linear framework for interpreting patterns of Northern Hemisphere wintertime climate variability. J Clim 17:3728–3744. doi:10.1175/1520-0442(2004)017<3728:ASLFFI>2.0.CO;2

    Google Scholar 

  • Salathè JREP (2003) Comparison of various precipitation downscaling methods for the simulation of streamflow in a Rainshadow River Basin. Int J climatol 23: 887–901

    Article  Google Scholar 

  • Schubert S (1998) Downscaling local extreme temperature changes in South-Eastern Australia for the CSIRO MARK2 GCM. Int J Climatol 18: 1419–1438

    Article  Google Scholar 

  • Skaugen Engen T (2007) Refinement of dynamically downscaled precipitation and temperature scenarios. Clim Change 84:365–382. doi:10.1007/s10584-007-9251-6

    Google Scholar 

  • Skourkeas A, Kolyva-Machera F, Maheras P (2010) Estimation of mean maximum summer and mean minimum winter temperatures over Greece in 2070–2100 using statistical downscaling methods. Euro Asian J Sustain Energy Dev Policy 2: 33–44

    Google Scholar 

  • Souvignet M, Heinrich J (2011) Statistical downscaling in the arid central Andes: uncertainty analysis of multi-model simulated temperature and precipitation. Theor Appl Climatol 106:229–244. doi:10.1007/s00704-011-0430-z

  • STARDEX (2005) Deliverable D13: recommendations on the most reliable predictor variables and evaluation of inter-relationships. http://www.cru.uea.ac.uk/cru/projects/stardex/deliverables/D13/. Accessed 15 May 2005

  • Timm NH (2004) Applied multivariate analysis. Springer, NY

    Book  Google Scholar 

  • Tolika K, Maheras P, Vafiadis M, Flocas HA, Arseni-Papadimitriou A (2007) Simulation of seasonal precipitation and raindays over Greece: a statistical downscaling technique based on artificial neural networks (ANNs). Int J Climatol 27:861–881. doi:10.1002/joc1442

    Google Scholar 

  • Tomezeiu R, Cacciamani C, Pavan V, Morgillo A, Busuioc A (2006) Climate change scenarios of surface temperature in Emilia-Romagna (Italy) obtained using statistical downscaling. Theor Appl Clim. doi:10.107/s00704-006-0275-z

  • Von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • Von Storch H, Zorita E, Cubasch U (1993) Downscaling of global climate change estimates to regional scales: an application to Iberian rainfall in wintertime. J Clim 6: 1161–1171

    Article  Google Scholar 

  • Wilby RL, Dawson CW, Barrow EM (2002) SDSM-a decision support tool for the assesment of regional clmate change impacts. Environ Model Softw 17(2): 145–157

    Article  Google Scholar 

  • Wilby RL, Wigley TML (2000) Precipitation predictors for downscaling: observed and general circulation model relationships. Int J Climatol 20: 641–664

    Article  Google Scholar 

  • Xoplaki E, Gonzà àlez-Rouco JF, Gyalistras D, Luterbacher J, Rickli R, Wanner H (2003). International summer air temperature variability over Greece and its connection to the large-scale atmospheric circulation and mediterranean SSTs 1950–1999. Clim Dyn 20:537–554. doi:10.1007/s00382-002-0291-3

    Google Scholar 

  • Xoplaki E (2002) Climate variability over the Mediterranean. Phd Thesis, University of Bern

  • Yang W, Bärdossy A, Caspary HJ (2010) Downscaling daily precipitation time series using a combined circulation-and regression-based approach. Theor Appl Climatol 102:439–454. doi:10.1007/s00704-010-0272-0

    Google Scholar 

  • Zorita E, Von Storch H (1999) The analog method as a simple statistical downscaling technique: comparison with more complicated methods. J Clim 12: 2474–2489

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anastasios Skourkeas.

Additional information

Handling Editor: Pierre Dutilleul.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skourkeas, A., Kolyva-Machera, F. & Maheras, P. Improved statistical downscaling models based on canonical correlation analysis, for generating temperature scenarios over Greece. Environ Ecol Stat 20, 445–465 (2013). https://doi.org/10.1007/s10651-012-0228-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-012-0228-x

Keywords

Mathematics Subject Classification (2000)

Navigation