Advertisement

Environmental and Ecological Statistics

, Volume 20, Issue 1, pp 1–17 | Cite as

Nonparametric circular methods for exploring environmental data

  • María Oliveira
  • Rosa M. Crujeiras
  • Alberto Rodríguez-Casal
Article

Abstract

The goal of this work is to introduce nonparametric kernel methods for density and regression estimation for circular data, and illustrate their use by a brief simulation study and real data application. Apart from supplying practitioners with a license free and easy to run code for the use of these methods, our aim is also to provide solutions to practical problems that may be encountered in their application. The real data examples belong to the International Polar Year project, concerned with the environmental change in the polar regions.

Keywords

Glacier Circular data Nonparametric estimation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10651_2012_203_MOESM1_ESM.txt (8 kb)
ESM 1 (TXT 8 kb)
10651_2012_203_MOESM2_ESM.txt (5 kb)
ESM 1 (TXT 6 kb)

References

  1. Bowman AW, Azzalini A (1997) Applied smoothing techniques for data snalysis. Oxford Science Publications, New YorkGoogle Scholar
  2. Di Marzio M, Panzera A, Taylor CC (2009) Local polynomial regression for circular predictors. Stat Probab Lett 79: 2066–2075CrossRefGoogle Scholar
  3. Fan J, Gijbels I (1996) Local polynomial modelling and its applications. Chapman and Hall, LondonGoogle Scholar
  4. Hall P, Watson GP, Cabrera J (1987) Kernel density estimation for spherical data. Biometrika 74: 751–762CrossRefGoogle Scholar
  5. Helmers R, Mangku IW, Zitikis R (2003) Consistent estimation of the intensity function of a cyclic Poisson process. J Multivar Anal 84: 19–39CrossRefGoogle Scholar
  6. Helmers R, Mangku IW, Zitikis R (2005) Statistical properties of a kernel type estimator of the intensity of a cyclic Poisson process. J Multivar Anal 52: 1–23CrossRefGoogle Scholar
  7. Jammalamadaka SR, SenGupta A (2001) Topics in circular statistics. World Scientific, SingaporeGoogle Scholar
  8. Jammalamadaka SR, Lund UJ (2006) The effect of wind direction on ozone levels: a case study. Environ Ecol Stat 13: 287–298CrossRefGoogle Scholar
  9. Mardia KV, Jupp PE (2000) Directional statistics. Wiley, New YorkGoogle Scholar
  10. Pewsey A (2006) Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution. Environ Ecol Stat 13: 257–269CrossRefGoogle Scholar
  11. R Development Core Team: (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  12. SenGupta A, Ugwuowo FI (2006) Assymetric circular–linear multivariate regression models with applications to environmental data. Environ Ecol Stat 13: 299–309CrossRefGoogle Scholar
  13. Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Ser B 53: 683–690Google Scholar
  14. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, LondonGoogle Scholar
  15. Sommerville MC, Mukerjee S, Fox DL (1996) Estimating the wind direction of maximum air pollutant concentration. Environmetrics 7: 231–243CrossRefGoogle Scholar
  16. Taylor CC (2008) Automatic bandwidth selection for circular density estimation. Comput Stat Data Anal 52: 3493–3500CrossRefGoogle Scholar
  17. Wand MP, Jones MC (1995) Kernel methods. Chapman and Hall, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • María Oliveira
    • 1
  • Rosa M. Crujeiras
    • 1
  • Alberto Rodríguez-Casal
    • 1
  1. 1.Department of Statistics and Operations ResearchUniversity of Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations