Advertisement

Environmental and Ecological Statistics

, Volume 15, Issue 3, pp 313–327 | Cite as

Determining the optimum number of increments in composite sampling

  • John E. Hathaway
  • G. Bruce Schaalje
  • Richard O. Gilbert
  • Brent A. Pulsipher
  • Brett D. Matzke
Article

Abstract

Composite sampling can be more cost effective than simple random sampling. This paper considers how to determine the optimum number of increments to use in composite sampling. Composite sampling terminology and theory are outlined and a method is developed which accounts for different sources of variation in compositing and data analysis. This method is used to define and understand the process of determining the optimum number of increments that should be used in forming a composite. The blending variance is shown to have a smaller range of possible values than previously reported when estimating the number of increments in a composite sample. Accounting for differing levels of the blending variance significantly affects the estimated number of increments.

Keywords

Blending Mixing Multi-increment Sample Size 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behets F, Bertozzi S, Kasali M, Kashamuka MAL, Brown C, Ryder R and Quinn T (1990). Successful Use of Pooled Sera to Determine HIV-1 Seroprevalence in Zaire With Development of Cost-Efficiency Models. AIDS 4: 737–741 PubMedCrossRefGoogle Scholar
  2. Duncan AJ (1962). Bulk sampling: Problems and lines of attack. Technometrics 4: 319–344 CrossRefGoogle Scholar
  3. Elder RS, Thompson WO and Myers RH (1980). Properties of composite sampling procedures. Technometrics 22: 179–186 CrossRefGoogle Scholar
  4. Gilbert RO and Doctor PG (1985). Determining the Number and Size of Soil Aliquots for Assessing Particulate Contaminant Concentrations. J Environ Qual 14: 286–292 CrossRefGoogle Scholar
  5. Izenman AJ (2001). Statistical and legal aspects of the forensic study of illicit drugs. Stat Sci 16: 35–57 CrossRefGoogle Scholar
  6. Jenkins TF, Grant CL, Brar G, Thorne PG, Schumacher PW, Ranney T (1996) Assessment of Sampling Error Associated with Collection and Analysis of Soil Samples at Explosives-Contaminated Sites. Tech. rep., US Army Corps of Engineers: Cold Regions Research and Engineering Laboratory, special Report, pp 96–15Google Scholar
  7. Jenkins TF, Grant CL, Brar G, Thorne PG, Schumacher PW and Ranney T (1997). Sampling Error Associated with collection and Analysis of Soil Samples at TNT-Contaminated Sites. Field Anal Chem Technol 1: 151–163 CrossRefGoogle Scholar
  8. Patil GP (1995). Editorial: Composite sampling. Environ Ecol Stat 2: 169–179 CrossRefGoogle Scholar
  9. Rohde CA (1976). Composite sampling. Biometrics 32: 273–282 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • John E. Hathaway
    • 1
  • G. Bruce Schaalje
    • 2
  • Richard O. Gilbert
    • 1
  • Brent A. Pulsipher
    • 1
  • Brett D. Matzke
    • 1
  1. 1.Pacific Northwest National LaboratoryRichlandUSA
  2. 2.Brigham Young UniversityProvoUSA

Personalised recommendations