Environmental and Ecological Statistics

, Volume 16, Issue 3, pp 389–405 | Cite as

Hierarchical spatial point process analysis for a plant community with high biodiversity

  • Janine B. Illian
  • Jesper Møller
  • Rasmus P. Waagepetersen


A complex multivariate spatial point pattern of a plant community with high biodiversity is modelled using a hierarchical multivariate point process model. In the model, interactions between plants with different post-fire regeneration strategies are of key interest. We consider initially a maximum likelihood approach to inference where problems arise due to unknown interaction radii for the plants. We next demonstrate that a Bayesian approach provides a flexible framework for incorporating prior information concerning the interaction radii. From an ecological perspective, we are able both to confirm existing knowledge on species’ interactions and to generate new biological questions and hypotheses on species’ interactions.


Bayesian inference Ecological plant communities Maximum likelihood Multivariate spatial point process Spatial interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong P (1991) Species patterning in the heath vegetation of the northern sandplain. Honours thesis, University of Western AustraliaGoogle Scholar
  2. Baddeley A, Møller J, Waagepetersen R (2000) Non- and semi-parametric estimation of interaction in inhomogeneous point patterns. Statistica Neerlandica 54: 329–350CrossRefGoogle Scholar
  3. Baddeley AJ, Turner R (2005) Spatstat: an R package for analyzing spatial point patterns. J Stat Software 12: 1–42Google Scholar
  4. Barndorff-Nielsen OE (1978) Information and exponential families in statistical theory. Wiley, ChichesterGoogle Scholar
  5. Beard J (1984) Biogeography of the Kwongan. In: Pate J, Beard J (eds) Kwongan – plant life of the sandplains. University of Western Australia Press, Nedlands, pp 1–26Google Scholar
  6. Berman M, Turner R (1992) Approximating point process likelihoods with GLIM. Appl Stat 41: 31–38CrossRefGoogle Scholar
  7. Burslem D, Garwood N, Thomas S (2001) Tropical forest diversity – the plot thickens. Science 291: 606–607PubMedCrossRefGoogle Scholar
  8. Callaway RM (1995) Positive interactions among plants. Bot Rev 61: 306–349CrossRefGoogle Scholar
  9. Crawley M (1997) Biodiversity. In: Crawley M (ed) Plant Ecology. Blackwell Publishing, pp 325–358Google Scholar
  10. Dale M, Dixon P, Fortin M, Legendre P, Myers D, Rosenberg M (2002) Conceptional and mathematical relationships among methods for spatial analysis. Ecography 25: 558–577CrossRefGoogle Scholar
  11. Diggle P (2003) Statistical analysis of spatial point patterns, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  12. Durrett R, Levin S (1998) Spatial aspects of interspecific competition. Theor Popul Biol 53: 30–43PubMedCrossRefGoogle Scholar
  13. Elkington J (1991) Report on the vegetation at Cooljarloo W.A. Unpublished report for TI02 Corporation, Ekomin Pty. Ltd., South PerthGoogle Scholar
  14. Gelman A, Meng XL, Stern HS (1996) Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Stat Sinica 6: 733–807Google Scholar
  15. Grabarnik P, Särkkä A (2008) Modelling of the spatial structure of a forest stand by Gibbs point processes with hierarchical interactions (in preparation)Google Scholar
  16. Gratzer G, Waagepetersen R, Splechtna BE, Laister M, Coomes D (2008) The influence of seed dispersal and environmental heterogeneity for generation of spatial patterns of seedlings in a spruce beech fir old growth forest (in preparation)Google Scholar
  17. Greig-Smith P (1983) Quantitative plant ecology. Blackwell Scientific, OxfordGoogle Scholar
  18. Herben T, During H, Law R (2000) Spatio-temporal patterns in grassland communities. In: Dieckmann U, Law R, Metz J(eds) The geometry of ecological interactions: Simplifying spatial complexity. Cambridge University Press, Cambridge, pp 11–27Google Scholar
  19. Högmander H, Särkkä A (1999) Multitype spatial point patterns with hierarchical interactions. Biometrics 55: 1051–1058PubMedCrossRefGoogle Scholar
  20. Kühlmann-Berenzon S, Heikkinen J, Särkkä A (2005) An additive edge correction for the influence potential of trees. Biometrical J 47: 517–526CrossRefGoogle Scholar
  21. Kuuluvainen T, Pukkala T (1889) Effect of scots pine seed trees on the density of ground vegetation and tree seedlings. Silva Fennica 23: 159–167Google Scholar
  22. Law R, Herben T, Dieckmann U (1997) Non-manipulative estimates of competition coefficients in grassland communities. Ecology 85: 505–517CrossRefGoogle Scholar
  23. Law R, Murrell D, Dieckmann U (2003) Population growth in space and time: spatial logistic equations. Ecology 84: 252–262CrossRefGoogle Scholar
  24. Liebhold A, Gurevitch J (2002) Integrating the statistical analysis of spatial data in ecology. Ecography 25: 553–557CrossRefGoogle Scholar
  25. Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime J, Hector A, Hooper D, Huston M, Raffaelli D, Schmid B, Tilman D, Wardle D (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–808PubMedCrossRefGoogle Scholar
  26. Magurran A (1988) Ecological diversity and its measurement. University Press, CambridgeGoogle Scholar
  27. Mateu J, Usó J, Montes F (1998) The spatial pattern of a forest ecosystem. Ecol Model 108: 163–174CrossRefGoogle Scholar
  28. Miina J, Pukkala T (2002) Application of ecological field theory in distance-dependent growth modelling. Forest Ecol Manag 161: 101–107CrossRefGoogle Scholar
  29. Møller J, Waagepetersen R (2003) Statistical inference and simulation for spatial point processes. Chapman and Hall/CRC, Boca RatonGoogle Scholar
  30. Murrell D, Purves D, Law R (2001) Uniting pattern and process in plant ecology. Trends Ecol Evol 16: 529–530CrossRefGoogle Scholar
  31. Økland RH, Rydgren K, Økland T (1999) Single-tree influence on understorey vegetation in Norwegian boreal spruce forest. Oikos 87: 488–498CrossRefGoogle Scholar
  32. Richardson D, Cowling R, Lamont B, van Hensbergen H (1995) Coexistence of banksia species in southwestern australia: The role of regional and local processes. J Veg Sci 6: 329–342CrossRefGoogle Scholar
  33. Robert CP, Casella G (1999) Monte carlo statistical methods. Springer-Verlag, New YorkGoogle Scholar
  34. Schoenberg FP (2005) Consistent parametric estimation of the intensity of a spatial-temporal point process. J Stat Plan Infer 128: 79–93CrossRefGoogle Scholar
  35. Stoll P, Weiner J (2000) A neighbourhood view of interactions among individual plants. In: Dieckmann U, Law R, Metz J(eds) The geometry of ecological interactions: simplifying spatial complexity. Cambridge University Press, Cambridge, pp 11–27Google Scholar
  36. Uriarte M, Condit R, Canham C, Hubbell S (2004) A spatially explicit model of sapling growth in a tropical forest: does indentity of neighbours matter. J Ecol 92: 348–360CrossRefGoogle Scholar
  37. Waagepetersen R (2005) Posterior propriety for Poisson processes. Manuscript available at http://www.math.aau.dk/~rw+
  38. Waagepetersen R (2007) An estimating function approach to inference for inhomogeneous Neyman-Scott processes. Biometrics 63: 252–258PubMedCrossRefGoogle Scholar
  39. Wiegand T, Moloney K (2004) Rings, circles, and null-models for point pattern analysis in ecology. Oikos 104: 209–229CrossRefGoogle Scholar
  40. Wu H, Sharpe PJH, Walker J, Penridge LK (1985) Ecological field theory: a spatial analysis of resource interference among plants. Ecol Model 29: 215–243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Janine B. Illian
    • 1
  • Jesper Møller
    • 2
  • Rasmus P. Waagepetersen
    • 2
  1. 1.CREEM, School of Mathematics and StatisticsUniversity of St AndrewsFifeScotland, UK
  2. 2.Department of Mathematical SciencesAalborg UniversityAalborgDenmark

Personalised recommendations