Environmental and Ecological Statistics

, Volume 13, Issue 2, pp 229–236 | Cite as

Modelling Ecological Presence–absence Data along an Environmental Gradient: Threshold Levels of the Environment

  • Christian Damgaard


A methodology for estimating environmental thresholds of binary presence–absence data is presented where the level of the threshold is parameterised. Presence–absence data is fitted to three complementary different models: an independent null-model, a monotonically increasing or decreasing model, and an optimum model. The range of the three models is strictly between zero and one and the models are therefore well suited for modelling presence probabilities. The results of the three models may be combined by using Bayesian model selection methodologies. The proposed methodology is exemplified on observed binary presence–absence data of Bauera rubioides along an elevation gradient.


Bayesian model selection Environmental gradient Modelling of species range Niche Regression Species distribution model Threshold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Austin, MP 1985Continuum concept, ordination methods, and niche theoryAnnu Rev Ecol Syst163961CrossRefGoogle Scholar
  2. Austin, MP 2002Spatial prediction of species distribution: an interface between ecological theory and statistical modellingEcol Model157101118CrossRefGoogle Scholar
  3. Boyce, MS, McDonald, LL 1999Relating populations to habitats using resource selection functionsTrends Ecol Evol14268272PubMedCrossRefGoogle Scholar
  4. Carlin, BP, Louis, TA 1996Bayes and empirical Bayes methods for data analysisChapman & HallLondonGoogle Scholar
  5. Damgaard, C 1998Plant competition experiments: testing hypotheses and estimating the probability of coexistenceEcology7917601767CrossRefGoogle Scholar
  6. Damgaard, C 2003Modelling plant competition along an environmental gradientEcol Model1704553CrossRefGoogle Scholar
  7. Damgaard, C, Hjer, R, Bayley, M, Scott-Fordsman, JJ, Holmstrup, M 2002Dose-response curve modelling of excess mortality caused by two forms of stressEnviron Ecol Stat9195200CrossRefGoogle Scholar
  8. Gauch, HG, Whittaker, RH 1972Coenocline simulationEcology53446451CrossRefGoogle Scholar
  9. Gleason, HA 1939The individualistic concept of the plant associationAm Midland Nat2192110CrossRefGoogle Scholar
  10. Green, PJ 1995Reversible jump Markov chain Monte Carlo computation and Bayesian determinationBiometrika82711732CrossRefGoogle Scholar
  11. Grime, P 2001Plant strategies, vegetation processes, and ecosystem propertiesWileyNew yorkGoogle Scholar
  12. Heegaard, E 2002The outer border and central border for species-environmental relationships estimated by non-parametric generalised additive modelsEcol Model157131139CrossRefGoogle Scholar
  13. Huisman, J, Olff, H, Fresco, LFM 1993A hierarchical set of models for species response analysis. J Veg Sci43746Google Scholar
  14. Kirkpatrick, M, Barton, NH 1997Evolution of species rangeAm Nat150123CrossRefGoogle Scholar
  15. Minchin, PR 1989Montane vegetation of the Mt. Field massif, Tasmania: a test of some hypotheses about properties of community patternsVegetatio8397110CrossRefGoogle Scholar
  16. Oksanen, J, Minchin, PR 2002Continuum theory revisited: what shape are species responses along ecological gradients?Ecol Model157119129CrossRefGoogle Scholar
  17. Rees, M, Grubb, PJ, Kelly, D 1996Quantifying the impact of competition and spatial heterogeneity on the structure and dynamics of a four-species guild of winter annualsAm Nat147132CrossRefGoogle Scholar
  18. Rees, M, Condit, R, Crawley, M, Pacala, S, Tilman, D 2001Long-term studies of vegetation dynamicsScience293650655PubMedCrossRefGoogle Scholar
  19. Schwarz, G 1978Estimating the dimension of a modelAnn Stat6461464Google Scholar
  20. Spiegelhalter, DJ, Best, NG, Carlin, BP, Linde, A 2002Bayesian measures of model complexity and fitJ Roy Stat Soc B64583639CrossRefGoogle Scholar
  21. Turnbull, LA, Coomes, D, Hector, A, Rees, M 2004Seed mass and the competition/colonization trade-off: competitive interactions and spatial patterns in a guild of annual plantsJ Eco9297109Google Scholar
  22. Wolfram, S 2003MathematicaWolfram Research, Inc.Champaign, USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Terrestrial EcologyNERISilkeborgDenmark

Personalised recommendations