Task beliefs and the voluntary use of the empty number line in third-grade subtraction and addition

Abstract

This study explored the relationships between task beliefs about the empty number line (ENL), mathematical ability, gender, and voluntary ENL use in multi-digit subtraction and addition. One hundred twenty-three Dutch third-grade students and nine teachers from six schools participated in this study. The multilevel path analysis showed that task beliefs about the ENL mediated the relationship between students’ mathematical ability and their voluntary ENL use. No gender differences were found in the multilevel path analysis. Finally, the results show that task beliefs about the ENL and voluntary ENL use differed across classrooms. The discussion focuses on the implications of the results for using the ENL in diagnostic assessment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alibali, M. W., Phillips, K. M. O., & Fischer, A. D. (2009). Learning new problem-solving strategies leads to changes in problem representation. Cognitive Development, 24(2), 89–101. https://doi.org/10.1016/j.cogdev.2008.12.005

    Article  Google Scholar 

  2. Baroody, A. J., Torbeyns, J., & Verschaffel, L. (2009). Young children’s understanding and application of subtraction-related principles. Mathematical Thinking and Learning, 11(1–2), 2–9. https://doi.org/10.1080/10986060802583873

    Article  Google Scholar 

  3. Baten, E., Praet, M., & Desoete, A. (2017). The relevance and efficacy of metacognition for instructional design in the domain of mathematics. ZDM Mathematics Education, 49(4), 613–623. https://doi.org/10.1007/s11858-017-0851-y

    Article  Google Scholar 

  4. Beishuizen, M. (1993). Mental strategies and materials or models for addition and subtraction up to 100 in Dutch second grades. Journal for Research in Mathematics Education, 24(4), 294–323. https://doi.org/10.2307/749464

    Article  Google Scholar 

  5. Björn, P. M., Räikkönen, E., Aunola, K., & Kyttälä, M. (2017). Dynamics between student vs. teacher perceptions of mathematics task-orientation and mathematics performance among adolescents. Learning and Individual Differences, 55, 21–28. https://doi.org/10.1016/j.lindif.2017.02.005

    Article  Google Scholar 

  6. Blöte, A. W., Klein, A. S., & Beishuizen, M. (2000). Mental computation and conceptual understanding. Learning and Instruction, 10(3), 221–247. https://doi.org/10.1016/S0959-4752(99)00028-6

    Article  Google Scholar 

  7. Bobis, J. (2007). The empty number line: A useful tool or just another procedure? Teaching Children Mathematics, 13(8), 410–413.

    Article  Google Scholar 

  8. Bobis, J., & Bobis, E. (2005). The empty number line: Making children’s thinking visible. In M. Coupland, J. Anderson, & T. Spencer (Eds.), Proceedings of the Twentieth Biennial Conference of The Australian Association of Mathematics Teachers (issue 08, pp. 66–72). Sydney, Australia: The Australian Association of Mathematics Teachers. Retrieved October 28, 2020, from http://aamt.dbinformatics.com.au/index.php/content/download/19063/252036/file/mm-vital.pdf#page=72

  9. Breen, S., & O’Shea, A. (2010). Mathematical thinking and task design. Bulletin of the Irish Mathematical Society, 66, 39–49

  10. Bramald, R. (2000). Introducing the empty number line. Education 3-13: International Journal of Primary, Elementary and Early Years Education, 28(3), 5–12. https://doi.org/10.1080/03004270085200271

    Article  Google Scholar 

  11. Carpenter, T. P., Franke, M. L., Jacobs, V. R., Fennema, E., & Empson, S. B. (1998). A longitudinal study of invention and understanding in children’s multidigit addition and subtraction. Journal for Research in Mathematics Education, 29(1), 37–50. https://doi.org/10.2307/749715

    Article  Google Scholar 

  12. Carr, M., Jessup, D. L., & Fuller, D. (1999). Gender differences in first-grade mathematics strategy use: Parent and teacher contributions. Journal for Research in Mathematics Education, 30(1), 20–46. https://doi.org/10.2307/749628

    Article  Google Scholar 

  13. Dowker, A., Bennett, K., & Smith, L. (2012). Attitudes to mathematics in primary school children. Child Development Research, 2012, 1–8. https://doi.org/10.1155/2012/124939

    Article  Google Scholar 

  14. Dowker, A., Sarkar, A., & Looi, C. Y. (2016). Mathematics anxiety: What have we learned in 60 years? Frontiers in Psychology, 7. https://doi.org/10.3389/fpsyg.2016.00508

  15. Fagginger Auer, M. F., Hickendorff, M., & van Putten, C. M. (2016). Solution strategies and adaptivity in multidigit division in a choice/no-choice experiment: Student and instructional factors. Learning and Instruction, 41, 52–59. https://doi.org/10.1016/j.learninstruc.2015.09.008

    Article  Google Scholar 

  16. Fagginger Auer, M. F., Hickendorff, M., van Putten, C. M., Béguin, A. A., & Heiser, W. J. (2016). Multilevel latent class analysis for large-scale educational assessment data: Exploring the relation between the curriculum and students’ mathematical strategies. Applied Measurement in Education, 29(2), 144–159. https://doi.org/10.1080/08957347.2016.1138959

    Article  Google Scholar 

  17. Fives, H., Barnes, N., Buehl, M. M., Mascadri, J., & Ziegler, N. (2017). Teachers’ epistemic cognition in classroom assessment. Educational Psychologist, 52(4), 270–283. https://doi.org/10.1080/00461520.2017.1323218

    Article  Google Scholar 

  18. Fredricks, J. A., Hofkens, T., Te Wang, M., Mortenson, E., & Scott, P. (2018). Supporting girls’ and boys’ engagement in math and science learning: A mixed methods study. Journal of Research in Science Teaching, 55(2), 271–298. https://doi.org/10.1002/tea.21419

    Article  Google Scholar 

  19. Fuson, K. C., Wearne, D., Hiebert, J. C., Murray, H. G., Human, P. G., Olivier, A. I., … Fennema, E. (1997). Children’s conceptual structures for multidigit numbers and methods of multidigit addition and subtraction. Journal for Research in Mathematics Education, 28(2), 130–162.

  20. Geary, D. C., Hoard, M. K., Nugent, L., & Byrd-Craven, J. (2008). Development of number line representations in children with mathematical learning disability. Developmental Neuropsychology, 33(3), 277–299. https://doi.org/10.1080/87565640801982361

    Article  Google Scholar 

  21. Gorin, J. S. (2007). Test construction and diagnostic testing. In J. P. Leighton & M. J. Gierl (Eds.), Cognitive diagnostic assessment for education: Theory and applications (pp. 173–201). New York, NY: Cambridge University Press.

  22. Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform mathematics education. Mathematical Thinking and Learning, 6(2), 105–128. https://doi.org/10.1207/s15327833mtl0602_3

    Article  Google Scholar 

  23. Gravemeijer, K., Bowers, J., & Stephan, M. (2003). Chapter 4: A hypothetical learning trajectory on measurement and flexible arithmetic. Journal for Research in Mathematics Education, 12, 51–66.

    Google Scholar 

  24. Graven, M., & Heyd-Metzuyanim, E. (2019). Mathematics identity research: The state of the art and future directions. ZDM Mathematics Education, 51(3), 361–377. https://doi.org/10.1007/s11858-019-01050-y

    Article  Google Scholar 

  25. Grootenboer, P., & Marshman, M. (2016). Mathematics, affect and learning: Middle school students’ beliefs and attitudes about mathematics education. Singapore: Springer. https://doi.org/10.1007/978-981-287-679-9

    Google Scholar 

  26. Heritage, M., & Wylie, C. (2018). Reaping the benefits of assessment for learning: Achievement, identity, and equity. ZDM Mathematics Education, 50(4), 729–741. https://doi.org/10.1007/s11858-018-0943-3

    Article  Google Scholar 

  27. Hickendorff, M., van Putten, C. M., Verhelst, N. D., & Heiser, W. J. (2010). Individual differences in strategy use on division problems: Mental versus written computation. Journal of Educational Psychology, 102(2), 438–452. https://doi.org/10.1037/a0018177

    Article  Google Scholar 

  28. Hop, M. (2012). Balans (47) van het rekenwiskundeonderwijs halverwege de basisschool 5 [fifth periodical assessment of mathematics education mid primary school]. PPON report no. 47. Arnhem, the Netherlands: Cito. Retrieved October 28, 2020, from https://www.cito.nl/-/media/files/kennis-en-innovatie-onderzoek/ppon/cito_ppon_balans_47.pdf?la=nl-nl

  29. Hox, J. (2002). Multilevel analysis. Techniques and applications. Mahwah, NJ: Lawrence Erlbaum Associates, Inc. Publishers.

    Google Scholar 

  30. Hox, J., Van De Schoot, R., & Matthijsse, S. (2012). How few countries will do? Comparative survey analysis from a Bayesian perspective. Survey Research Methods, 6(2), 87–93.

    Google Scholar 

  31. Janssen, J., Scheltens, F., & Kraemer, J. M. (2006). Primair onderwijs. Leerling- en onderwijsvolgsysteem. Rekenen-wiskunde groep 5 [Primary education. Pupil and educational monitoring system. Mathematics grade 3]. Arnhem, the Netherlands: Cito.

  32. Janssen, J., Verhelst, N., Engelen, R., & Scheltens, F. (2010). Wetenschappelijke verantwoording van de toetsen LOVS Rekenen-Wiskunde voor groep 3 tot en met 8. [scientific validation report for the LOVS mathematics test for grades 3 through 6]. Resource document. Arnhem, the Netherlands: Cito. Retrieved October 28, 2020, from http://www.toetswijzer.nl/html/tg/14.pdf

  33. Keeley, P., & Tobey, C. R. (2011). Mathematics formative assessment- 75 practical strategies for linking assessment, instruction, and learning. Thousand Oaks, CA: Corwin Press.

    Google Scholar 

  34. Kirk, E. P., & Ashcraft, M. H. (2001). Telling stories: The perils and promise of using verbal reports to study math strategies. Journal of Experimental Psychology: Learning, Memory, and Cognition, 27(1), 157–175. https://doi.org/10.1037//0278-7393.27.1.157

    Article  Google Scholar 

  35. Kraemer, J. M. (2011). Oplossingsmethoden voor aftrekken tot 100 [solution methods for subtraction up to 100] (doctoral dissertation, Eindhoven, the Netherlands: Technical University Eindhoven). https://doi.org/10.6100/IR721544

  36. Leighton, J. P. (2004). Avoiding misconception, misuse, and missed opportunities: The collection of verbal reports in educational achievement testing. Educational Measurement: Issues and Practice, 23(4), 6–15. https://doi.org/10.1111/j.1745-3992.2004.tb00164.x

    Article  Google Scholar 

  37. Leighton, J. P., & Gierl, M. J. (2007). Why cognitive diagnostic assessment. In J. P. Leighton & M. J. Gierl (Eds.), Cognitive diagnostic assessment for education: Theory and applications (pp. 3–18). New York, NY: Cambridge University Press.

  38. Murphy, C. (2011). Comparing the use of the empty number line in England and the Netherlands. British Educational Research Journal, 37(1), 147–161. https://doi.org/10.1080/01411920903447423

    Article  Google Scholar 

  39. Muthén, L. K., & Muthén, B. O. (2019). Mplus User’s Guide (7th ed.). Los Angeles, CA: Muthén & Muthén. Retrieved October 28, 2020, from https://www.statmodel.com/download/usersguide/MplususerguideVer_7_r3_web.pdf.

  40. Nuutila, K., Tuominen, H., Tapola, A., Vainikainen, M. P., & Niemivirta, M. (2018). Consistency, longitudinal stability, and predictions of elementary school students’ task interest, success expectancy, and performance in mathematics. Learning and Instruction, 56, 73–83. https://doi.org/10.1016/j.learninstruc.2018.04.003

    Article  Google Scholar 

  41. Passolunghi, M. C., Cargnelutti, E., & Pellizzoni, S. (2019). The relation between cognitive and emotional factors and arithmetic problem-solving. Educational Studies in Mathematics, 100(3), 271–290. https://doi.org/10.1007/s10649-018-9863-y

    Article  Google Scholar 

  42. Peltenburg, M., van den Heuvel Panhuizen, M., & Robitzsch, A. (2010). ICT-based dynamic assessment to reveal special education students’ potential in mathematics. Research Papers in Education, 25(3), 319–334. https://doi.org/10.1080/02671522.2010.498148

    Article  Google Scholar 

  43. Rupp, A. A., Gushta, M., Mislevy, R. J., & Shaffer, D. W. (2010). Evidence-centered design of epistemic games: Measurement principles for complex learning environments. Journal of Technology Learning and Assessment, 8(4), 1–45.

    Google Scholar 

  44. Rupp, A. A., Templin, J., & Henson, R. A. (2010). Diagnostic measurements. Theory, methods, and applications. New York, NY: The Guilford Press.

    Google Scholar 

  45. Snow, R. E. (1989). Toward assessment of cognitive and conative structures in learning. Educational Researcher, 18(9), 8–14.

    Article  Google Scholar 

  46. Sullivan, P., Clarke, D., & Clarke, B. (2013). Teaching with tasks for effective mathematics learning. New York, NY: Springer. https://doi.org/10.1007/978-1-4614-4681-1

    Google Scholar 

  47. Summers, J. J., Schallert, D. L., & Muse Ritter, P. (2003). The role of social comparison in students’ perceptions of ability: An enriched view of academic motivation in middle school students. Contemporary Educational Psychology, 28(4), 510–523. https://doi.org/10.1016/S0361-476X(02)00059-0

    Article  Google Scholar 

  48. Teppo, A., & van den Heuvel-Panhuizen, M. (2013). Visual representations as objects of analysis: The number line as an example. ZDM Mathematics Education, 46, 45–58. https://doi.org/10.1007/s11858-013-0518-2

    Article  Google Scholar 

  49. Torbeyns, J., De Smedt, B., Ghesquière, P., & Verschaffel, L. (2008). Acquisition and use of shortcut strategies by traditionally schooled children. Educational Studies in Mathematics, 71(1), 1–17. https://doi.org/10.1007/s10649-008-9155-z

    Article  Google Scholar 

  50. Torbeyns, J., Hickendorff, M., & Verschaffel, L. (2017). The use of number-based versus digit-based strategies on multi-digit subtraction: 9–12-year-olds’ strategy use profiles and task performance. Learning and Individual Differences, 58, 64–74. https://doi.org/10.1016/j.lindif.2017.07.004

    Article  Google Scholar 

  51. Treffers, A., van den Heuvel-Panhuizen, M., & Buys, K. (2000). Jonge kinderen leren rekenen. Tussendoelen annex leerlijnen. Hele getallen onderbouw basisschool [Young children learn mathematics. Intermediate goals annex learning trajectories. Whole numbers in lower grades of primary school]. Groningen, the Netherlands: Wolters-Noordhoff.

  52. van den Heuvel-Panhuizen, M. (2008). Learning from “Didactikids”: An impetus for revisiting the empty number line. Mathematics Education Research Journal, 20(3), 6–31.

    Article  Google Scholar 

  53. van den Heuvel-Panhuizen, M., & Peltenburg, M. (2011). A secondary analysis from a cognitive load perspective to understand why an ICT-based assessment environment helps special education students to solve mathematical problems. Research in Mathematics Education, 10(1–2), 23–41.

    Google Scholar 

  54. van der Kleij, F. M., Vermeulen, J. A., Schildkamp, K., & Eggen, T. J. H. M. (2015). Integrating data-based decision making, assessment for learning, and diagnostic testing in formative assessment. Assessment in Education: Principles, Policy & Practice, 22(3), 324–343. https://doi.org/10.1080/0969594X.2014.999024

    Article  Google Scholar 

  55. van der Linden, W. J., & Hambleton, R. K. (1997). Handbook of modern item response theory. New York, NY: Springer.

    Google Scholar 

  56. Verhelst, N. D., & Glas, C. A. W. (1995). The one parameter logistic model. In G. H. Fischer & I. W. Molenaar (Eds.), Rasch Models. New York, NY: Springer. https://doi.org/10.1007/978-1-4612-4230-7_12

    Google Scholar 

  57. Verhelst, N. D., Glas, C. A. W., & Verstralen, H. H. F. M. (1994). OPLM computer program and manual. Arnhem, the Netherlands: Cito.

  58. Vermeulen, J. A., & Eggen, T. J. H. M. (2013). Feedback over aftrekmethoden van leerlingen via de lege getallenlijn. Mogelijkheden en uitdagingen [Feedback about students’ subtraction strategies on the empty number line. Possibilities and challenges] In M. van Zanten (Ed.) Rekenen-wiskunde op niveau. [On level mathematics] Proceedings of the 31st Panama conference January 31st and February 1st, 2013 in Utrecht (pp. 93–107). Utrecht, The Netherlands: FIsme, Utrecht University. Retrieved October 28, 2020, from https://www.fisme.science.uu.nl/publicaties/literatuur/panama_cursusboek/pcb_31_93-107_Vermeulen.pdf

  59. Vermeulen, J. A., Scheltens, F., & Eggen, T. J. H. M. (2015). Strategy identification using the empty number line: A comparison between paper-and-pencil and tablets. Pedagogische Studiën, 92(1).

  60. Vermeulen, J. A., Béguin, A., Scheltens, F., & Eggen, T. J. H. M. (2020). Evaluating the characteristics of diagnostic items for bridging errors in multi-digit subtraction. Frontiers in Education, 5. https://doi.org/10.3389/feduc.2020.537531

  61. Zhu, Z. (2007). Gender differences in mathematical problem solving patterns: A review of literature. International Education Journal, 8(2), 187–203.

    Google Scholar 

Download references

Acknowledgements

We are very grateful for the feedback that was given by Herbert Hoijtink on earlier drafts and the analyses of this paper.

Funding

This work was supported by the Netherlands Organisation for Scientific Research (NWO) under Grant MaGW/PROO: Project 411–10-750.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorine A. Vermeulen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(XLSX 250 kb)

Appendix

Appendix

Table 6 Characteristics of the addition and subtraction items in the two versions of the diagnostic ENL assessment task

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vermeulen, J.A., Béguin, A. & Eggen, T.J.H.M. Task beliefs and the voluntary use of the empty number line in third-grade subtraction and addition. Educ Stud Math 106, 231–249 (2021). https://doi.org/10.1007/s10649-020-10016-x

Download citation

Keywords

  • Empty number line
  • Multi-digit addition and subtraction
  • Diagnostic assessment
  • Task beliefs