Educational Studies in Mathematics

, Volume 96, Issue 3, pp 349–365 | Cite as

History of mathematics in secondary school teachers’ training: towards a nonviolent mathematics education

Article

Abstract

In the context of mathematics teachers’ training, the concept of dépaysement épistémologique (epistemological disorientation) emphasizes that the contact with the history of mathematics, particularly with the use of original sources, pushes aside commonplace students’ perspectives about the discipline and offers them a critical look towards mathematics’s historical, social and cultural aspects. Conceptually supported by the theory of objectivation, an emergent sociocultural theory in mathematics education, this study describes the dépaysement épistémologique lived by future mathematics teachers engaged in the reading of historical texts. A phenomenological approach allowed us to clarify various meanings associated with students’ lived experiences and a dialogical perspective provides a way to get these meanings in tension through a polyphonic narration. Our reading of this polyphonic narration suggests that dépaysement épistémologique associated with the reading of historical texts encouraged empathy from students towards the authors and their future learners, opening up the possibility for a nonviolent mathematics education.

Keywords

History of mathematics Mathematics teachers’ training Readings of historical texts dépaysement épistémologique Phenomenological approach Polyphonic narration 

Notes

Acknowledgments

We would like to acknowledge Mariama Mary Fall, Tasha Ausman and Richard Barwell for the revision of this text.

References

  1. Arcavi, A., & Isoda, M. (2007). Learning to listen: From historical sources to classroom practice. Educational Studies in Mathematics, 66(1), 111–129.CrossRefGoogle Scholar
  2. Bagni, G., Furinghetti, F., & Spagnolo, F. (2004). History and epistemology in mathematics education. In L. Cannizzato, A. Pesci, & O. Robutti (Eds.), Italian research in mathematics education 2000–2003 (pp. 170–192). Milan: Ghisetti & Corvi.Google Scholar
  3. Bakhtin, M. (1977). (Published by the name of V. N. Volochinov). Le marxisme et la philosophie du langage [Marxism and the philosophy of language]. Paris: Minuit. (Original work published 1929)Google Scholar
  4. Bakhtin, M. (1982). L’œuvre de François Rabelais et la culture populaire au Moyen-Âge et sous la Renaissance [Rabelais and his world]. Paris: Gallimard. (Original work published 1970)Google Scholar
  5. Bakhtin, M. (1986). Speech genres and other late essays. Austin: University of Texas Press.Google Scholar
  6. Bakhtin, M. (1997). Esthétique et théorie du roman [Questions of literature and aesthetics]. Paris: Gallimard. (Original work published 1978)Google Scholar
  7. Bakhtin, M. (1998). La poétique de Dostoïevski [Problems of Dostoevsky's poetics]. Paris: Seuil. (Original work published 1963)Google Scholar
  8. Bakhtin, M. (2003). Pour une philosophie de l’acte [Toward a philosophy of the act]. Lausanne: L’Âge d'Homme. (Original work published 1986)Google Scholar
  9. Ball, D. L. (1993). With an eye on the mathematical horizon: Dilemmas of teaching elementary school mathematics. The Elementary School Journal, 93(4), 373–397.CrossRefGoogle Scholar
  10. Barbin, E. (1997). Histoire et enseignement des mathématiques. Pourquoi? Comment? (History and teaching mathematics: Why? How?) Bulletin de l’Association mathématique du Québec, 37(1), 20–25.Google Scholar
  11. Barbin, E. (2006). Apport de l’histoire des mathématiques et de l’histoire des sciences dans l'enseignement [History of mathematics and history of sciences’ contributions in the teaching]. Tréma, 26(1), 20–28.Google Scholar
  12. Barbin, E. (2012). L’histoire des mathématiques dans la formation: une perspective historique (1975–2010) [History of mathematics in the teaching: A historical perspective (1975–2010)]. In J.-L. Dorier & S. Coutat (Eds.), Acte du congrès de l’EMF 2012 (pp. 546–554). Geneva: University of Geneva.Google Scholar
  13. Derrida, J. (1979). L’écriture et la différence [Writing and difference]. Paris: Seuil.Google Scholar
  14. Derrida, J. (1996). Le monologuisme de l’autre [Monolingualism of the other]. Paris: Galilée.Google Scholar
  15. Deschamps, C. (1993). L’approche phénoménologique en recherche [Phenomenological approach in research]. Montreal: Guérin.Google Scholar
  16. Freudenthal, H. (1983). The didactical phenomenology of mathematical structures. Dordrecht: Reidel.Google Scholar
  17. Fried, M. N. (2007). Didactics and history of mathematics: Knowledge and self-knowledge. Educational Studies in Mathematics, 66(2), 203–223.CrossRefGoogle Scholar
  18. Fried, M. N. (2008). History of mathematics in mathematics education: A Saussurean perspective. The Montana Mathematics Enthusiast, 5(2), 185–198.Google Scholar
  19. Furinghetti, F. (2007). Teacher education through the history of mathematics. Educational Studies in Mathematics, 66(2), 131–143.CrossRefGoogle Scholar
  20. Giorgi, A. (Ed.). (1975). Phenomenology and psychological research. Pittsburgh: Duquesne University Press.Google Scholar
  21. Giorgi, A. (1989). One type of analysis of descriptive data: Procedures involved in following a scientific phenomenological method. Methods, 1(3), 39–61.Google Scholar
  22. Guillemette, D. (2011). L’histoire dans l’enseignement des mathématiques: sur la méthodologie de recherche [History in mathematics’ teaching: On methodology]. Petit x, 86(1), 5–26.Google Scholar
  23. Guillemette, D. (2015). L’histoire des mathématiques et la formation des enseignants du secondaire: sur l’expérience du dépaysement épistémologique des étudiants [History of mathematics and secondary school teachers’ education: On the lived experience of dépaysement épistémologique]. (Doctoral dissertation). Université du Québec à Montréal, Canada. Retrieved from http://www.archipel.uqam.ca/7164/1/D-2838.pdf.
  24. Gulikers, I., & Blom, K. (2001). “A historical angle”: Survey of recent literature on the use and value of history in geometrical education. Educational Studies in Mathematics, 47(2), 223–258.Google Scholar
  25. Jahnke, H. H. (1994). The historical dimension of mathematics understanding: Objectifying the subjective. In J. P. da Ponte & J. F. Matos (Eds.), Proceedings of PME-18 (Vol. 1, pp. 139–156). Lisbon: University of Lisbon.Google Scholar
  26. Jahnke, H. N. (1996). Set and measure as an example of complementarity. In H. N. Jahnke, N. Knoche, & M. Otte (Eds.), History of mathematics and education: Ideas and experiences (pp. 173–193). Göttingen: Vandenhoeck und Ruprecht.Google Scholar
  27. Jahnke, H. N., et al. (2000). The use of original sources in the mathematics classroom. In J. Fauvel & J. van Maanen (Eds.), History in mathematics education: The ICMI study (pp. 291–328). Dordrecht: Kluwer Academic Publishers.Google Scholar
  28. Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71(3), 235–261.CrossRefGoogle Scholar
  29. Kjeldsen, T. H. (2010). Does history has a significant role to play for the learning of mathematics? In E. Barbin, M. Kronfellner, & C. Tzanakis (Eds.), Proceedings of ESU 6 (pp. 51–61). Vienna: Holzhausen.Google Scholar
  30. Kjeldsen, T. H. (2012). Uses of history for the learning of and about mathematics: Towards a theoretical framework for integrating history of mathematics in mathematics education. In S. Choi & S. Wang (Eds.), Proceedings of HPM 2012 (pp. 1–21). Daejeon, South Korea: HPM.Google Scholar
  31. Levinas, E. (2010). Totalité et infini: essai sur l’extériorité [Totality and infinity: An essay on exteriority]. Paris: Librairie Générale Française. (Original work published 1971)Google Scholar
  32. Levinas, E. (2011). Le temps et l’autre [Time and the other]. Paris: Presses Universitaires de France. (Original work published 1979)Google Scholar
  33. Morris, P. (1994). The Bakhtin reader: Selected writings of Bakhtin, Medvedev, Voloshinov. London: Edward Arnold Publication.Google Scholar
  34. Radford, L. (2008). The ethics of being and knowing: Towards a cultural theory of learning. In L. Radford, G. Schubring, & F. Seeger (Eds.), Semiotics in mathematics education: Epistemology, history, classroom and culture (pp. 215–234). Rotterdam: Sense Publishers.Google Scholar
  35. Radford, L. (2011). Vers une théorie socioculturelle de l’enseignement-apprentissage: La théorie de l'Objectivation [Toward a sociocultural theory of teaching and learning: The theory of Objectivation]. Éléments, 1, 1–27.Google Scholar
  36. Radford, L. (2012). Education and the illusions of emancipation. Educational Studies in Mathematics, 80(1), 101–118.CrossRefGoogle Scholar
  37. Radford, L., Furinghetti, F., & Katz, V. (2007). Introduction: The topos of meaning or the encounter between past and present. Educational Studies in Mathematics, 66(1), 107–110.CrossRefGoogle Scholar
  38. Sabo, K., & Nielsen, G. M. (1984). Critique dialogique et postmodernisme [Dialogism and postmodernism]. Études françaises, 20(1), 74–86.Google Scholar
  39. Siu, M.-K. (2006). No, I don’t use history of mathematics in my class: Why? In F. Furinghetti, S. Kaijser, & C. Tzanakis (Eds.), Proceedings HPM 2004 & ESU 4 (Rev. ed., pp. 368–382). Uppsala: University of Uppsala.Google Scholar
  40. Van Manen, M. (1990). Researching lived experience: Human science for an action sensitive pedagogy. London Canada: The althouse press.Google Scholar
  41. Van Manen, M. (1994). “Doing” phenomenological research and writing: An introduction. Edmonton: University of Alberta.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Faculté d’éducationUniversité d’OttawaOttawaCanada

Personalised recommendations